COMP 161 — Lecture Notes 15
Complexity and Big-O

In these lecture notes we look at algorithm complexity and the use of
Big-O notation to express complexity classes.

Efficiency, Complexity, and Computational Resources

Being efficient means optimizing the use of one or more resources.

A fuel efficient car will travel far while minimizing the consumption
of fuel. This means the ratio of miles traveled per gallon of fuel is
high relative to a less efficient vehicle'. When comparing cars for fuel
efficiency we tend to look at things like the expected miles per gallon
or perhaps the highest achievable miles per gallon. In both cases,
we’re operating the car not under a guarantee of peak efficiency but
with an understanding that we can expect a certain level of efficiency
when driving. In short, we understand that manufactures typically
provide us with theoretically achievable efficiency for our vehicle and
that in practice, mileage may vary.

Of course efficiency is not a singular measure. It is relative to the
consumption of a specific resource. Perhaps the consumption of fuel
is not your concern, but time is. A time efficient car would exhibit a
higher acceleration rate and/or top speed. We typically expect that
this increased time efficiency came at the cost of fuel efficiency. So
not only is efficiency subjective, but the overall efficiency of a vehicle
involves trade offs. Less time means more fuel, less fuel means more
time.

Complexity

Enough about cars. What about computers and computation? The
most discussed and emphasized computational resource around is
TIME. Time efficient computations take less time. We then tend to
look at other resources in terms of their relationship with time. By
increasing the sPACE® needs of a computation we can often decrease
the time needs. Conversely, decreasing space often requires increased
time. In this way space might be viewed as the fuel of computation.
There are still more resources used in computation. When we get into
parallel computation, we start to think about things like comMUNI-
CATION as a resource. The less computers working in parallel have to
communicate, the less time they need and vice versa.

CoMPLEXITY THEORY is the branch of theoretical computer sci-
ence in which problems are classified by the resource needs of their
solutions. Go look at the documentation for C++ library procedures

* conversely the ratio of gallons con-
sumed per mile is lower

*memory
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and class methods on cplusplus.com and you'll see a section title
Complexity. This is exactly the complexity theoretic view of the effi-
ciency of that procedure. It provides the programmer with a broad
classification of the efficiency of the procedure in favor of a fine-
grained view. From the programmer’s perspective, complexity mea-
sures of efficiency provide you with an expectation of efficiency in
much the same way that a car manufacture’s reported miles per
gallon does for fuel efficiency. The specifics of your usage of a pro-
cedure, the actual inputs, the actual state of the system, will have an
impact on the time needed but the complexity provides some general
guarantees.

Unless otherwise specified, complexity classifications are based
on the WORST CASE resource needs of the procedure. The worst and
best case are often generated by a very specific variation of the input
and it’s easier to be concrete about their resource needs. For example,
the basic search procedure’s best case is when the item we’re looking
for is the first item we look at and it’s worst case is when it’s the
last. The average case is much less specific; it's when the item we're
looking for is neither the first nor the last. Given a choice between
best case and worst case thinking, we err on the side of worst case.
Knowing that your program needs at most some amount of time
means that on average we can can expect that efficiency or better.
This UPPER BOUND on the resource needs is ultimately more useful
to the programmer than the lower bound offered by the best case.

Complexity theory is carried out in a machine and language ag-
nostic fashion. We measure time by counting basic operations, not by
the clock. We measure space sometimes by bits and bytes but some-
times by abstract, discrete units of data. By classifying procedures in
this way we are able to rule out the language used and the machine
executing the code and instead focus on some underlying abstract
model of computation. In doing so, the assessment of a procedure’s
complexity becomes an assessment of the underlying algorithm and
not the actual implementation. As a discipline of study, complexity
theory is smack dab at the intersection of mathematics and com-
puter science3. For our purposes, we simply with to apply the basic
principles, broad categorization of program efficiency based on the
the expected worst case performance of the procedures, to program
design and evaluation.

Big-O

There is a precise mathematical tool call Bic-O NoTaTION that we
can use to express the relationship we’re looking for when expressing
procedure complexity.

3 The work itself is done in mathematics
where the objects of study are those

of computer science. The distinction
between the two disciplines gets awful
blurry in this realm
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Definition 1. Let the functions f and g be functions for positive integers.
Then the function f is on the order of g if there exists constants ny > 0 and
« such that for all n > ny

f(n) <ag(n)
We write this as f(n) = O(g(n)), or sometimes just f = O(g),* and often 40 is uppercase letter o, not the num-
say “f is Big-O of §” as opposed to “f is on the order of ¢ ber zero

Let’s pick this apart so that we understand what saying f = O(g)
really means. First notice it’s clearly an upperbound relationship.
The value ag(n) is at least as big as f(n). The a term is allowing us
to focus not on the specific value of ¢(n) as our bound but nearly any
multiple of g(n). We're more or less saying that “f(n) is no larger
than some multiple of g(n)”. Finally, by throwing in 1y we're empha-
sizing “larger” values of n for whatever large means to us. Putting
this all together we see that f = O(g) really means:

For all n past some point>, we can draw some mul’ciple6 of ¢ on or 519
above f fu

The notion of Big-O gives us the right mixture of specificity and
flexibility for capturing complexity and complexity classes.

In future courses you'll explore this formalism in more depth.
Right now we want to learn some basic rules and relationships that
follow such that we understand how Big-O communicates complexity
classes. There are three basic consequences of definition 1 that are es-
sential to working with Big-O in both a formal and informal manner.
I'll state them formally and then provide some insight as to why they
are so essential to complexity analysis.

The order of a sum is the sum of the orders.

Theorem 1. Let f and g be functions over the positive integers. Then,

O(f +8) = 0(f) +0O(g)

All procedures can be broken down into a series of steps. This the-
orem (1) tells us that it is enough to know the order of each step. This
let’s us greatly simplify complexity analysis by doing it piecewise
rather than on the whole.

We have two properties that deal with produces and Big-O. The
order of a product is the product of the orders.

Theorem 2. Let f and g be functions over the positive integers. Then,

O(fg) = O(f)O(g)
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The order of a function is invariant under multiplication by a
constant.

Theorem 3. Let f and g be functions over the positive integers. Then for
all real-values «,

O(ag) = 0O(g)

A great number of procedures involve repetition and repetition
induces a product.”. When the repetition is done a fixed number 7 Repeating k operators t times takes tk
of times, then theorem (3) tells us that the order of the repetition is operations in total
the same as the the order of the thing being repeated. Similarly, if
we repeat some fixed, constant amount of work, some function of
our input size number of times, then theorem (3) tells us that the
order of the repetition is the order of them number of function that
determines the number of repetitions. If, however, the repetition and
the work are both functions of our input size, then theorem (2) tells
us that we can at least analyze the order of the repetition and the
order of the repeated work in parts but cannot really simplify to one
order or the other.
Using Big-O we can establish a strict ordering of some functions.
This will be true of the functions on which we’ll base our complexity
classes. It turns out that larger orders dominate smaller orders.

Theorem 4. For functions f and g. If O(f) < O(g), then

O(f) +O(g) = O(g)

Once again, sums arise from the discrete steps of a computation.
When one step requires an order of magnitude more computation
than another step, then that step dominates the total running time of
the computation to the point that the whole computation behaves as
if it were only of that larger complexity class. What Theorem 4 lets
us do is focus solely on the critical steps that account for most of the

work.8. 81 tend to think of this rule in terms
of spending money. If you're paying
. . . thousands of dollars for something,
ties to the constructs of programs. The step-wise nature of induces then adding on tens of dollars doesn’t

Hopefully you're picking up on the fact that these rules have close

sums in our time complexity functions and those sums can be more really change the big picture- you're
paying thousands of dollars for some-

thing.If you're paying $5000, then you’ll
our time complexity functions and those produces can be managed probably also pay 5050

easily managed using theorem (1). Repetition induces products in

with theorem (2) and (3). The analysis of conditionals is simplified
by the fact that we’re only concerned with the worst case. If we
know which branch has the highest order, then we can focus on that
branch.
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Some Complexity Classes

Remember our intended use for Big-O notation is the classification of
the (time) complexity of procedures in order to address the questions
like whether or not one procedure is more or less complex than an-
other or if a given procedure is too complex to be usable in practice.
A large majority of the procedures we encounter have a time func-
tion which is on the order of one of the following functions. These
functions, in turn, establish a clear ordering of classes.

1. CONSTANT
If the complexity function f is constant, i.e. f(n) = c for some
fixed value c, then we say f = O(1).

2. LoGARITHMIC
If the complexity function f is logarithmic, i.e. f(n) = log,n,
then we say f = O(logn). Notice that we leave off the base of the
logarithm. It can be shown that the base of the logarithm actually

doesn’t matter in Big-O notation® so we typically use 2. You'll 90(log, n) = O(log, ) for all 2 and b

often see log, written as Ig

3. LINEAR
If the complexity function f is linear, i.e. f(n) = n, then we say

f=0(n).

4. LINEARITHMIC™ ° a blend of linear and logarithmic
If the complexity function f is the product of linear and logarith-
mic function, i.e. f(n) = nlogn, then we say f = O(nlogn).

5. QUADRATIC
If the complexity function f is a quadratic function, i.e. f(n) = n?,

then we say f = O(n?).

6. CusIC
If the complexity function f is a cubic function, i.e. f(n) = n®, then
we say f = O(n?).

7. EXPONENTIAL
If the complexity function f is a exponential for some constant
c>1,ie. f(n)=c". We express this as f = O(c").

8. FACTORIAL
If the complexity function f is the factorial, i.e. f(n) = n!, then we

say f = O(n!).

Within each class there is an awful lot of nuance. For example,
pick any time function where {(n) = an + b, then f = O(n). As
you may remember from math class, the larger the value of a the

5
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greater the slope of the line and the faster it grows. Big-O notation
completely ignores this reality and instead groups all lines together.
That'’s ok, the point of Big-O and complexity classes are not specific,
nuanced details, but big picture, order of magnitude details.

The complexity classes we use are represented by basic, well un-
derstood functions for which there is a strict least to greatest growth
rate order.

O(1) < O(logn) < O(n) < O(nlogn) < O(n?) < O(n®) < O(c") < O(n!)

If you have two different procedures that solve the same problem
and one has work O(n) and the other has work O(nlogn), then you
know the first, the linear work option, is a whole order of magnitude
better than the later. This is what we get from Big-O and complex-
ity classes. We get the ability to partition the infinite world of pro-
cedures into simple efficiency complexity classes that allow us to
quickly and easily identify order of magnitude differences.

On the practical side of things, we can also quickly identify when
a procedure will be impractical. Computer science has drawn a line
in the sand at POLYNOMIAL COMPLEXITY such that any complexity
class that is a polynomial or better is theoretically efficient. This
includes everything on our list but O(2") and O(n!). It turns out
that this somewhat arbitrary choice works pretty well in practice.
However, cubic and quadratic functions do grow pretty quickly and
can easily be impractical for even modest n. Superlinear or better is
almost always practical, even for very large n. You'll get a very real
sense of this in your final project, but let’s look at some numbers to
get you thinking.

First lets look at how each function grows as n grows.

lgin) n nlg(n) nn2 nn3 2An
1 0 1.00 0 1.00 1.00 2.00
10 3.00 10.0 33.0 100. 1.00x%10° 1.02x10°
25 5.00 25.0 116. 625. 1.56x10¢ 3.36x107
50 6.00 50.0 282. 2.50x10° 1.25%10° 1.13%10%°
75 6.00 75.0 467. 5.63x10° 4.22x10° 3.78x10%
100 7.00 100. 664. 1.00x%10° 1.00 % 10° 1.27 %103
500 9.00 500. 4.48x10°  2.50x10° 1.25x 108 3.27 x 10190
1000 10.0 1.00x10%  9.97x10° 1.00 % 10° 1.00x%10° 1.07 %1030
2500 11.0 2.50x10%  2.82x10% 6.25x10° 1.56x101"  3.76x1077
5000 12.0 5.00%x10%°  6.14x10°% 2.50x107 1.25%10% 1.41 % 101509
7500 13.0 7.50x10°  9.65x10% 5.63x107 4.22x 10" 5.31x10%%7
10000 13.0 1.00x%10% 1.33 % 10° 1.00 % 10° 1.00x10%%  2.00x103%°
25000 15.0 2.50x10%  3.65x10° 6.25x10° 1.56 %10 5.62x107%
50000 16.0 5.00%x10% 7.80x10° 2.50x10° 1.25x%10% 3.16x 1015052
75000 16.0 7.50x10%  1.21x10° 5.63x10° 4.22x10%  1.78x10%577
100000 17.0 1.00x%10° 1.66 % 10° 1.00x%10%° 1.00x10%%  9.99x1030202
250000 18.0 2.50x10%  4.48x10°%  6.25x101%  1.56x10%%  3.15x1073%%
500000 19.0 5.00x10°  9.47x10° 2.50 %10 1.25x10%7  9.955 10505
750000 20.0 7.50x10°  1.46x107 5.63 %101 4.22x10Y 3,14 1038772
1000000 | 20.0 1.00 % 10° 1.99 % 107 1.00x%10%2 1.00x10%  9.90x10301029

Figure 1: The value of key complexity
class functions for increasing values of
n

6
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Now imagine you have a computer that performs 1 operation

every nanoseconds™ Then, we can attach some time amounts to " also known as a 1 Gigaflop GFLOP
computerThis is actually fairly modest
by today’s standards. Your average
laptop can probably do two to five

these complexity classes.

lgin) o nlg(n) nh2 nh3 2_” HigasdettFhéumemgeded to compute
1 0ns 1.00mns 0 ns 1.00ns 1.00mns 2.00 ns key Complexity class functions at
10 3.00ns 10.0 ns 33.0mns 100. ns 1.00us 1.02 us 1GFLOP
25 5.00 ns 25.0 ns 116. ns 625. ns 15.6 us 33.6ms
50 6.00 ns 50.0 ns 282. ns 2.50 us 125. us 1.86 wk
75 6.00 ns 75.0 ns 467. ns 5.62 us 422. us 1.20x10
100 7.00 ns 100. ns 664. ns 10.0 us 1.00 ms 4.02x10" ¥y
500 9.00 ns 500. ns 4.48 us 250. us 125. ms 1.04x10° yr
1000 10.0ns  1.00us 9.97 us 1.00 ms 1.00s 3.40%10%% yr
2500 11.0ns  2.50us  28.2us 6.25 ms 15.6 5 1.19%10™° yr
5000 12.0ns 5.00 us 61.4 us 25.0 ms 2.08 min 4.48 % 10%88
7500 13.0ns 7.50 us 96.5 us 56.2 ms « 10
10000 13.0ns 10.0 us = 100. ms < 10¢
25000 15.0 ns 25.0 us = 625. ms 107" yr
50000 16.0 ns 50.0 us 780. us 2.50 < 10° vr

75000 16.0 ns 75.0us 1.21ms 5.

100000 17.0 ns 100. us 1.66 ms 10.0s 1.65wk 3.17 % 103908 yy

250000 16.0 ns 250. us 4.48 ms 1.04 min 5.95 mo 1.00% 107241 yr
500000 19.0 ns 500. us 9.47ms  4.17 min 3.96 yr 3.16 % 107

750000 20.0 ns 750. us 14.6 ms 9.38 min 13.4 vyr 9.95x 107 VI
1000000 20.0 ns 1.00 ms 19.9 ms 16.7 min 31.7 yr 3.14 510391003 gy
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