COMP161
Project 2
Basic Profilers

Spring 2017

Your final project requires that you write four programs to carry out
basic profiling of average cases of some classic algorithms and run
those programs for a variety of vector sizes. When you're done you'll
submit your code and the results of your profiling experiments.

A Basic Average-Case Profiler

Each of your four programs runs in exactly the same way. The user
pases two positive valued integers at the command-line. The first is
the number of times the procedure being profiled should be run and
the second is the size of the data set. For example, if you're going

to use the program profFind to profile the C++ std::find procedure by
running it 10 times on a vector of size 10000, then you’d run profFind
10 10000 at the command-line.

The programs should report the size of the vector and time taken
in milliseconds for each execution writing not more than five execu-
tion times per line and placing a space between each time. Addition-
ally, the average time taken should be given on a line of its own after
all the individual times have been reported.

Let’s say you had a vector of size 1000, ran seven runs of std::find,
and they took 3, 5, 4, 3, 4, 7, and 9 milliseconds respectively' for an * these times are made up
average execution time of 5 milliseconds. Then your program would
print:

1000
35434
79

5

The basic output template is size on one line followed by individ-
ual times written five per line followed by the average time.

The Four Procedures

From the C++ standard library?, you'll be profiling: std::find, std::sort, 2 specifically the algorithm library
and std::binary_search. From the instructor’s searchsort library you'll be
profiling searchsort::insertsort.
The true average case for these procedures is determined from
some knowledge of what kind of data they can expect to work with.
We'll simply look at cases that are not guaranteed to be the worst or



COMP161 PROJECT 2 BASIC PROFILERS 2

best case. For the two sorts this occurs when they are given random,
unsorted data. For the two searches this occurs when the item you're
looking for is in the middle of the vector somewhere.

The labp2 library given to you by the instructor provides the proce-
dure labp2::rand_ints which produces a vector containing the numbers
1 to n in random order as well as a procedure labp2::sorted_ints which
gives the same range in sorted order. These procedures can be used
as the basis for all your profiling runs. Sorting will require several
instances of random vectors where searching can work with sorted
vectors3

Given that the sorts are mutators, it is important that every indi-
vidual sort start with a freshly generated vector. Resorting an already
sorted vector can induce best or worst case behavior. For the searches
you'll need to use the C++ random library to generate a random inte-
ger in the middle range of indexes for the vector. For example, if our
vector has a size of n, then we want a random number drawn from
the uniform distribution of [2, 32]. That number is the index of the
number for which we’ll search. If your pick 17 and random, then you
should search for the number at index 17 in your vector. Each search
should pick a new number to search for. The vector itself can be
reused but the index containing the search key must be regenerated.

Gather Data

Once your profiling programs work, you should use them to gather
some basic data about these procedures and their associated algo-
rithms. That data should be written to a file using command-line
redirects such that each procedure has it’s own file. This means you
should append each different run of your program to the procedure’s
data file.

Minimally, you must gather data on 10 executions for each proce-
dure and for each of the following sizes: 100,500,1000,5000,10000,50000,
and 100000. You're welcome to try more or less executions than 10 as
well as different sizes. Be certain that you understand the perfor-
mance of the procedure before you ramp things up. It is recom-
mended that you work your way from least to most complex proce-
dure*.

Logistics and TLDR

You are expected to use helper procedures and good program design
practice where prudent. Code must be well documented and tested.
You should not be cramming all the code into main. On the other
hand, you do not need to do extreme decomposition into procedures.

3 binary search requires sorted vectors

4 binary search, find, sort, insertion sort



COMP161 PROJECT 2 BASIC PROFILERS 3

Find a happy medium that works for you. In the end, there should
be a clear sense of design and style. It should be easily read and
followed by a human reader in addition to correctly carrying out the
task at hand.

e Lab 4/26 — Open work time. Submit what you end up with as
labp2.

e Lab 5/3 — Open lab time to work. No submission.

® Saturday 5/6 Program code and data files submitted via handin as
proj2 by noon.



	A Basic Average-Case Profiler
	Gather Data
	Logistics and TLDR

