COMP161
Project 1
Grade Explorer

Spring 2017

For this project you'll implement a basic, interactive CLI program
that lets you carry out some standard tasks revolving around grades
computed by weighted average.

Program Overview

Like many other courses, this course uses a weighted average system
for computing your grade. Your assignments are broken down into
categories where each category gets a weight expressed as a percent
of the total grade. The final grade is then computed by multiplying
the category grade by the weight and summing this value up for each
category. A more detailed treatment of this is given below.

Your program will help students better understand their grade
and this kind of system by carrying out the calculations needed to
answer several standard questions:

1. What impact does a specific assignment have on the final grade?

2. What grade do I need to average to achieve a particular target
grade?

3. What’s my current grade?

The program should be interactive and takes no command-line
arguments. When launched, the user will be presented with a menu
that lets them select one of the above tasks or choose to quit the pro-
gram. Each of the three core tasks are, themselves, repeated until the
user chooses to return to the main menu. User inputs should be val-
idated and appropriate prompts and error messages should be used.
In short, you should design the Ul with an eye towards usability.

Weighted Averages

Let’s begin by looking at a basic unweighted average calculation® and
see how it is a specific case of the weighted average. In this course
your lab grade is the average of 10 lab grades. This means we add up
each score and divide by the total number of labs. If I is the score

of the first lab and Iy is the score of the last, then we compute the
average lab score L as,

B lo+hLh+--+Ilg+1
o 10

L

* the average you're most likely familiar
with

COMP161 PROJECT 1 GRADE EXPLORER

Another way to write the sum of scores is with Sigma notation.

e

l;
i=0

L=

The greek letter) denotes a sum. To the right is an expression we

wish to sum. Below the letter }_ is an initial value for a variable that

will appear in the expression and above is the maximum value of

that variable. So the expression given above is telling us: “For all

values of i from o to 9, sum [;”. If we simply wanted to add all the *t's useful to recognize that % isa

numbers from 5 to 10000 we could write this as, i=a
sum of b —a + 1 terms

10000

Y i
i=5

Returning now to the calculation of the average, we can express
the average score A of n scores each denoted by sy to s,,_1 as the
sum,

n—1
‘ZO Si -1 s n=lq
A="——=)Y 2 =Y _g 1
T ©

The later two forms of Equation 1 come from distributing the multi-
plication of 1/n across the terms of the sum. Rather than first sum-
ming and then dividing, we can sum the scores after each has been
multiplied by 1/7 as each score accounts for 1/n of the total. The
term 1/n can be viewed as the weight of the score with which it is
multiplied. In this way the unweighted average is just a weighted
average where every score has the same weight. This is often called
an unweighted average.

A general weighted average allows for different weights so long as

2

the sum of the weights is 13. In the space of grades you see this ex- 3 the weight is the portion or percent of

pressed as a percentage of the total grade. To compute the weighted the whole

average A of n n scores sg to s,_1 with respective weights wy to w,_1
we can compute the sum,

n—1
A=) wixs; (2)
i=0

If you check your syllabus you'll see that you homework, lab,
exam, and project grades are all determined by unweighted averages.
The final grade is then a weighted average of these averages along
with a participation grade. Each assignment category average is
computed as a percent give the final weighted average a percentage
point value as well.

COMP161 PROJECT 1 GRADE EXPLORER

Task 1: Single Assignment Analysis

The first task in your program will allow the user to determine the
impact of a single assignment on their grade. We'll need the assign-
ment grade, the weight of that kind of assignment, and the total
number of that kind of assignment. The program should then tell the
user the weight of that assignment in their final grade and percentage
points of their final grade gained and lost due to their score on that
assignment. We’ll now see how to work with parts of the weighted
sum to compute these values.

Say your homework accounted for 30% of your grade and you
had 6 equally weighted homework assignments, then what weight
does a single homework have in the final grade? In the final grade
calculation we’d take the total homework average H and multiply by
the weight 0.3 to get the homework contribution to the final grade.
Recall that as an unweighted average H would be computed as,

> 1
H = Z 651‘
i=0
where s; is the scoret of the i" homework assignment. Instead 4 presumably as a percent

of multiplying H by the overall homework weight .3 we can dis-
tribute that weight across the individual terms of H to get the per
assignment weight. In this case each assignment weight becomes
.3/6 = 0.05 meaning a single homework assignment is worth 5% of
your final grade. In general, if the assignment category has a weight
of w. and there are n assignments in that category, each weighted the
same, then the per-assignment weight in the final grade is w./n.

Now that we know the weight of the assignment in the final grade
calculation we can determine the number of percentage points it
contributes to the final grade by simply multiplying the newly cal-
culated weight by the actual score. For example, if we got 75% on a
homework assignment, then by multiplying by 0.05, the weight of
the assignment on the final grade, we get the contribution for this
assignment towards the final grade. So this assignment contributes
0.75 % 0.05 = 0.0375 or 3.75 of the 100 possible percentage points. On
the other hand, we missed out on the other 25% of that assignment
and have lost 0.25 x 0.05 = 0.0125 or 1.25 percentage points. Put an-
other way, as a result of this one assignment, our course grade can be
no higher than 98.75% but no lower than 3.75%.

Task 2: Setting Goals

The first task of the program lets the user evaluate the present. The
second task lets them think about the future. Given a current grade
and the weight of that grade and a final goal, we can compute the

3

COMP161 PROJECT 1 GRADE EXPLORER

grade needed to reach that goal. Users should first provide the cur-
rent grade and weight. They are then able to repeatedly enter a target
grade in-order to see what their target average should be. The idea is
that they can keep playing “What if?” with their grade, i.e. “What if I
want to get a C?”, “Ok, and now if I want a B?”, etc. For each “what
if” they should not have to re-enter the current grade and weight,
only the goal.

This task works for any grade computed by an average. Let’s look
at how the unweighted average used to compute assignment category
grades becomes a weighted average in this context.Say you have nine
labs in total and your average on the first five is 68%. The weight
of those five labs is 5/9 of your total lab score. The remaining labs
account for the remaining 4/9 of the lab score. Given an average of f
on our remaining labs, we would compute the final lab score of L as

follows,
5 4
L=-.68+—
Cha 9f
With a bit of algebra we can re-write this as an equation for the aver-
age f.
L—3.68
f= 49
9

What if we want a 80% on our labs? What do we need on our re-
maining four labs.

9 _

0.8 —-0.37

0.4

= 095

An average of 95% is needed on the remaining labs if we want to get
an 80% for our lab grade.

In general terms, if we currently have an average of ¢, that aver-
age has a weight of w,, and we wish to achieve a final grade of L,
then the average ¢ that we need to make or exceed on the remaining

assignments is,
L —cx*xw

(1—w)

This can be applied not only to assignment category grade but to the

=

final grade as well. You'll need to figure out the weight of the work
done so far and the grade for that work, then the above formula can
be used. The final task of the program gets at computing the grade

and weight of work done for a specific category.

COMP161 PROJECT 1 GRADE EXPLORER

Task 3: Current Category Grade

The final task of your program computes the current score and
weight on a particular assighment category. That is, given a set

of assignment scores and the total number of assignments in that
category, your program should report the current average for that
category and the weight of that average in the final grade. When
combined with the other functionalities of this program, users will be
able to do some fairly detailed analysis of their grades.

The details of this calculation were implied by the second task.
Let’s do an example to make sure it’s clear. If you have five exams
total and on the first two you scored a 75% and a 88% respectively,
then your current exam average is,

75 .88
SRy = 0.815

The weight in your final grade of this 81.5% exam average is %

In general, if you've completed k of n assignments then the weight
of those k assignments is % and the average of those 7 is just their
unweighted average.

Grading

Your grade for this project is determined by the quality of your code
and the amount of the program completed correctly. The quality ac-
counts for 40% of the grade and the completeness and correctness
accounts for the remaining 60%. The completeness and correctness
requirements direct you to produce a program that correctly carries
out some of the desired features of this program. The quality re-
quirements direct you to ensure that whatever you get done not only
works but is done well to a standard beyond correct functionality.

Quality Points

To earn full credit for code quality you must use good programming
style, have well written documentation, and a full set of tests for

all procedures. Further more, your design should be making good
use of helper procedures in order to manage the complexity of the
program. Cramming everything into a small number of procedures
is likely to cause you to lose some points on design quality but you
can earn a good amount of points if the procedures you have are well
documented and tested using gTest. On the other hand, you can do
an excellent job breaking things down into basic procedures but lose
points to sparse or missing documentation and tests.

5

COMP161 PROJECT 1 GRADE EXPLORER

Correctness and Completeness Points

This project is meant to be worked on incrementally in a top-down
fashion. You should first build the complete UI with the core com-
putational tasks stubbed out. You should then work through each
task in the order they were presented. The UI and each task act as
benchmarks for your completeness and correctness grade. Partial
credit towards the next benchmark can be earned by having well
done stubs and tests for procedures from that benchmark. In gen-
eral, you should be incrementally developing the complete program
where each increment is done well. Larger scale programs are not
all or nothing endeavor. Having code that doesn’t compile or that
is ripe with serious bugs is not a goal of the programmer. It’s better
that your program do some of the work very well then all the work

poorly.

An A level project will correctly carry out all three pro-
gram tasks with little to no bugs.

A B level project will do everything the C level project
can do but also be capable of carrying out the second
task with little to no bugs.

A C level project will will do everything the C- level
project does but also be capable of carrying out the first
task with little to no bugs.

A C- level project will have a complete UI but none of
the tasks are implemented. Users can select tasks from
the main menu, and those tasks will go through their
basic prompts, but only stub output is given. Stubs
should exist for each task and should be called by the
UL

A D level project will compile and run but doesn’t cor-
rectly navigate the UI nor do any of the tasks work. In
short, it has serious, program-breaking bugs.

Any project that does not compile is unlikely to receive
a passing grade.

6

COMP161 PROJECT 1 GRADE EXPLORER 7

Timeline

When it’s due, submit your code as assignment projz using handin.

Date Assignment Due Table 1: Project Due Dates

3/29 Project Lab Assignment
4/5 (Nothing Due) Free Work time in Lab
4/15 Project due by “end of day”

	Program Overview
	Weighted Averages
	Grading
	Timeline

