
COMP 161
Lecture Notes 18
Randomized Procedures
April 21, 2017

In these notes we discuss issues with designing procedures that utilize
randomized data.

Randomness in Computing

Early on in the history of modern computing, people figured out
that there was often some advantage to utilizing randomness as
resource in the design of procedures. Monte Carlo methods1 work 1 http://en.wikipedia.org/wiki/

Monte_Carlo_methodby repeating a computation of a large sample of randomly generated
inputs. Optimization algorithms often use randomness to escape a
local minimum or maximum. In cryptography, randomness lends
itself to stronger guarantees of security.

Of course even if there weren’t some computational advantage to
the use of randomness, we’d still like computers to have access to
randomness as lots of real world problems and applications rely on
randomness. Games that use dice or cards often require randomness.
Random processes exist in nature and we might wish to simulate
or emulate these processes. Sometimes we’re not concerned with
randomness as much as we are uncertainty. We can use probability to
quantify uncertainty, but to simulate this uncertainty we’d need some
level of randomness.

Whether it’s a problem solving device or a part of a problem,
we often need randomness in our programs. What we’d like is for
our computer to have a fair coin. If it did, then any time we needed
some randomness we could simply instruct the computer to flip the
coin. Just like we’ve constructed a wealth of data from raw binary
numbers, we can construct a whole host of interesting random phe-
nomenon from a single coin. If you want a random int value, you
could simply flip the coin 32 times. A random char would need 8

flips. In practice, we don’t deal in random bits, but instead in ran-
dom numbers2. So when we want randomness in our programs we 2 Typically random unsigned integers

look for libraries that provide access to a random number generator.
Unfortunately, computers don’t really have a built in random number
generator.

The hardware on which modern computers are build is deter-
ministic and therefore has no way to produce randomness3. We’ve 3 no coins in there

found some clever means of harvesting the apparent randomness
in nature, but these are often slow or hard to implement for general

http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method


comp 161 lecture notes 18 randomized procedures 2

use4. Historically, people would employ tables of randomly gener- 4 http://en.wikipedia.org/

wiki/Random_number_generation#

Generation_methods
ated numbers such that whenever a new number was needed they’d
just grab the next one from the table. This practice of fetching a pre-
determined random value lends some intuition to the most common
source of randomness in modern computers, the Psuedo Random

Number Generator

Psuedo Random Number Generation

Imagine a giant book full of tables of seemingly random sequences
of numbers. The book has a clear table of contents such that you can
flip to any one table easily. To the owner of the book there’s nothing
really random going on here. The ith entry of the jth table is always
the same. From this perspective this book is totally deterministic.
We could simply write it to a computer chip and have the same data
accessible in the same way we it was in the book.

Now consider the outside observer that does not have access to the
book. Let’s say they know the book’s owner will read off one number
from the book. Well there’s no way to know what that number will
be and given that the tables themselves contain random sequences,
there’s no way to predict the next number having heard one or more
already. That is given the ith entry from a table, there’s no way to
predict the (i + 1)th entry. In a perfect world we’d like there to be
no way to predict any one entry given any number of of the other
entries from the table.

Now lets put a computational spin on this. The combination of the
book’s owner and the book is one system such that the table number
j and the current entry on the table i defines the state of the system.
We can modify the state by choosing a different table or by reading
off a number from the current table. Numbers are read in order, so
when we read number i the next number to be read is i + 1. In the
event that we run out of numbers on the current table, we’ll simply
start over again and begin reading numbers from the beginning of
the same table. This repetition is only a problem if our table size is
smaller or near in size to the number of random numbers we expect
to need5. Notice that given this book, we have a totally deterministic 5 Repeating the table causes a pattern to

form. Patterns are antithesis of randommeans of generating random numbers.
The problem is that for the book metaphor to work, we’d need

to set aside a large amount of space for the tables. What we really
want is some mathematical function that computes the tables. We
need some { such that {(j, i) returned the ith number from the jth ta-
ble. It’s not the least bit obvious that we should even attempt to find
such a function. It would seem like the ability to calculate the tables
via some formula would imply a pattern in the numbers. Our imag-

http://en.wikipedia.org/wiki/Random_number_generation#Generation_methods
http://en.wikipedia.org/wiki/Random_number_generation#Generation_methods
http://en.wikipedia.org/wiki/Random_number_generation#Generation_methods


comp 161 lecture notes 18 randomized procedures 3

ined tables are random. They should have no pattern. Yet by the 40s
people had discovered easy to compute functions that when given a
seed value produced a stream of numbers that generally appear to
be random to the outside observer. Given the same seed value, they’ll
continue to produce the same sequence, just like our tables. We call
these functions pseudo random number generators, or PRNGs.
A PRNG does not provide true randomness. Certain PRNGs do a
much better job at obfuscating the underlying pattern than others.
So, when simulating true randomness matters, then you’ll need to
known a bit more about the landscape of PRNGs available to you.
For the things we’re doing in this class, we’re OK with whatever de-
fault PRNG the system provides and the level of randomness that
PRNG offers to us.

Given a PRNG we have access to as many sequences of random
numbers as there are possible seed values for the PRNG. This is
great, except that we often don’t want the exact numbers given to us
by our PRNG and we have no way to directly modify the possible
values our PRNG computes. To get around this we typically turn to
statistics, which provides us with a whole vocabulary for describing
the form and function of randomness in terms of distributions.
So, the other thing we look for libraries to provide is a way of turning
PRNG output into numbers from a specific statistical distribution. So,
before we translate all of this over to C++, I want to plug your local
Probability and Statistics course. Out best means of understanding
and quantifying randomness is through probability and statistics.
Making good use of randomness is becoming increasingly common
in computing. It’s well worth your time to familiarize yourself with
the basic principles of probability and statistics.

PRNGs in C++

The changes to C++ brought about by the new C++11 standard in-
cluded a new library called random. This library provides several
different PRNGs and a set of procedures for converting PRNG output
to well studied probability distributions, including uniform distribu-
tions. Prior to C++11 people used the C standard library PRNG and
either wrote their own methods transforming its output to a specific
distribution or sought out non-standard C++ libraries. Let’s see how
to use this library to get uniformly distributed random integers and
doubles.

All PRNGs are represented as random number engine objects. To
get an instance of one of these objects we declare a variable of type
std::default_random_engine6. Like all variables, we’d like to initialize 6 Other generator types are available,

but this will work OK for our purposesgenerator. To initializing a PRNG means passing it a seed value. The



comp 161 lecture notes 18 randomized procedures 4

basic way to seed a PRNG7 is to give it an unsigned integer. We can 7 and the only way we’ll explore

either do this when we declare the variable or after the fact. Here you
see both options.

std::default_random_engine generator; //default seed

generator.seed(5); //seed with 5

std::default_random_engine gen(0); //seed value 0

The min and max methods allow you to determine the minimum
and maximum value possible with the PRNG.

std::default_random_engine gen(0);

cout << "The default PRNG produces integers from [" << gen.min() << ","

<< gen.max() <<"]\n";

To extract a random number from the PRNG object we do some-
thing we’ve never done before- we use the object as if it were a procedure.
Let’s get and print 15 numbers, 5 per line.

std::default_random_engine gen(0);

for(int i{0} ; i < 15 ; ++i)

cout << gen();

if( i % 5 == 4 ){

cout << ’\n’;

}

else{

cout << ’ ’;

}

}

Here we see the expression gen() being used to extract random num-
bers from our PRNG gen. This is weird for two reasons. First we
expect the thing before a set of parenthesis to be a procedure name
or control structure keyword8. In this case its the name of a variable. 8 if, while, for

The second source of weirdness is the fact that the “procedure” takes
no inputs.

We can use our PRNG object as a procedure because C++ gives us
the ability to treat parenthesis as operators9. We call this operator the 9 operator() in the documentation

application operator. Object classes with a defined application
operator are typically called functors. Functors can be a bit confus-
ing at first. They blur the line between data and procedures by virtue



comp 161 lecture notes 18 randomized procedures 5

of functioning in both worlds. We’ll get our feet wet with functors
with the random library. Later we’ll learn to write our own functors.

No argument procedures seem a bit strange coming from a purely
functional world. However, considering what we know about PRNGs
and our PRNG gen, we can start to piece together why this is a per-
fect case for a no argument procedure. When we constructed gen we
seeded the PRNG. The user of gen() simply wants a random number.
In terms of our book metaphor, it makes no sense to force them to
choose a table10 and entry number from that table. In fact, if they 10 seed

did, the process would cease to be random because they’d simply
be selecting entry i from table j and table which is always the same.
So, in the end, the seed and the “location” of the next entry should
be hidden away from the user in order to ensure the interface we
wanted all along-give me a random number.

Of course, we deterministically selected the seed value for or
PRNG. This is a bit problematic. Every time we run our code to print
15 random values we’ll get the same 15 values- the first 15 value in
the sequence generated by seed 0. What would be great was if we
generated a random seed, but that causes a bit of a paradox. Instead,
we could settle for a different seed every time we run the program.
You could keep the previous seed value in a file11 and then when 11 Files are the only way to save pro-

gram state from one execution to the
next

the program runs it reads that value from the file and then adds one
to it. This would let you count through seeds. This approach is a bit
cumbersome however. A better source for numbers that are different
every time you run your program is time itself.

The standard approach to generating unique seeds across program
executions is to use the system time. Computers tend to see time as
the number of milliseconds that have passed since some fixed point
in time called the epoch

12. What we want to do is get this number 12 http://en.wikipedia.org/wiki/

Unix_timeand use it as our seed. This means that unless we call our program
more than once in the same millisecond, we’ll have a different seed
every time we run it.

To get the time since the Epoch in C++ we can use the C++11

chrono library. By chaining together a few method calls we can get
time since the epoch measured in milliseconds13. 13 we’ll trace through these method calls

in class. It’s a great exercise in reading
library documentation// ms since epoch

unsigned int seed1 = std::chrono::system_clock::now().time_since_epoch().count();

// use time as seed

std::default_random_engine gen(seed1);

// do some random stuff

We did not use the curly braces for initialization because we’re ac-

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time


comp 161 lecture notes 18 randomized procedures 6

tually converting between long int and unsigned int. In this case, if
the conversion changes the number, we don’t particularly care. The
actual time isn’t important, just the fact that it’s different than the
last time we ran the program. If you use the curly braces you’ll get a
narrowing conversion warning14. 14 go try it!

Getting the current time in milliseconds and initializing a variable
with it is a bit cumbersome, we could break it up. While doing so,
we could make use of the C++11 auto feature. This lets the compiler
determine variable types for us. This is a good place for auto because
the whole statement is pretty much boilerplate whenever we want to
seed a PRNG and so the types are not essential to the problem. When
using auto, it’s typical to use assignment based initialization rather
than curly braces.

// get the time

auto clk = std::chrono::system_clock::now();

auto now_in_ms = clk.time_since_epoch().count();

// create and seed the PRNG

std::default_random_engine gen(now_in_ms);

Using the current time gets us a pretty good approximation to a
random seed and we’ll use it for most applications. However, it’s
important to note the fact that we can pass an explicit seed value and
get a specific sequence of numbers. We’ll see that this is extremely
helpful when it comes to testing code involving randomness.

Uniformly Distributed Randomness in C++11

When people tend to think of randomness they think of the uni-
form distribution. A single flip of a coin and the roll of a die
are classic examples of discrete, uniform randomness. You’re just as
likely to get heads as you are tails. On a six sided die, all six sides
are equally likely. In terms of a PRNG, we’re talking about getting
some integer from the interval [a, b] where all possible outcomes are
equally likely. We can imagine something similar for doubles. The
key difference is that there are, in theory, an infinite number of pos-
sible numbers in the interval [0, 1]. Setting that issue aside, what we
really want is no favoritism between possible outcomes. In more for-
mal terms, the probability of each possible outcome is the same, or
uniform15. This is the essence of uniformly distributed possibilities 15 Probability is exactly what we’re dis-

tributing when we talk about statistical
distributions

and what most people probably associated with randomness.
Distributions in the C++ library work by first declaring a distri-

bution object with the parameters of that distribution. Then, given a
source of randomness16, we can use that distribution object as a func- 16 a PRNG



comp 161 lecture notes 18 randomized procedures 7

tor for retrieving random values from that distribution. In the case of
uniformly distributed numbers from a set range, we first declare the
distribution and supply the min and max value of the range. Here we
see distributions for integers and real values.

// simulating a six sided die

std::uniform_int_distribution<int> distribution{1,6};

// getting random reals in [0,1]

std::uniform_real_distribution<double> distribution{0.0,1.0};

These types utilize templates. This is another new and extremely
useful feature of C++ that the random library exposes us to.

Recall that C++ allows us to use many different types for mathe-
matical integers. The standard is the int but we could also use long,
short, and byte. All of these also have unsigned versions as well. For
real valued17 numbers, we typically use double, but we could also use 17 things you write with a decimal

the less precise float. This means that if we want random integers,
we must also choose the type C++ uses to represent these integers
and similarly for reals. This is what templates do for you. The type
std::uniform_int_distribution<int> provides uniformly distributed in-
tegers as int values where std::uniform_int_distribution<short> would
provide them as short integers. Similarly std::uniform_real_distribution<double>
provides real values as doubles as opposed to some other type. The
sub-type18 is called the template arguments. The definition for 18 int in

std::uniform_int_distribution<int>the distribution has a template parameter that acts as a type vari-
able. What we’re seeing is writing definitions with variable types and
not just variable values.

We can now produce PRNGs and distributions. All that’s left is to
put the two together. In order to do this we use the distribution as
a functor that takes a single argument, a PRNG. Let’s generate and
print 30 random numbers from 1 to 6

19 with 6 numbers per line. 19
30 rolls of a six sided die

// Setup the PRNG

auto clk = std::chrono::system_clock::now();

auto now_in_ms = clk.time_since_epoch().count();

std::default_random_engine gen{now_in_ms};

// Declare and initialize

std::uniform_int_distribution<int> dist{1,6};

for(int i{0} ; i < 30 ; ++i ){

// dist(gen) produces a uniformly distributed random int from [1,6]

cout << dist(gen);



comp 161 lecture notes 18 randomized procedures 8

if( i % 6 == 5 ){

cout << ’\n’;

}

else{

cout << ’ ’;

}

}

If the look of dist(gen) bothers you, then the documentation for the
random class points you in the direction of some more mysterious20 20 for now

code that lets you hide passing of the PRNG and replace 21 with 21 dist(gen)

something that looks like the no argument PRNG call we saw in the
previous section. The procedure std::bind is in the functional library.

auto clk = std::chrono::system_clock::now();

auto now_in_ms = clk.time_since_epoch().count();

std::default_random_engine gen{now_in_ms};

std::uniform_int_distribution<int> dist{1,6};

// dice now acts like dist(gen)

auto dice = std::bind ( dist, gen );

// roll 3D6 for your wisdom stat

int wisdom = dice()+dice()+dice();

Binding your PRNG to the distribution is certainly optional, but it is
nice to hide the PRNG away. It also allows us to establish a uniform
signature22 for sources of randomness that we can later exploit for 22 void → number

designing randomized procedures.

Random Permutations and std::shuffle

Sometimes we don’t want a sequence of random numbers, but in-
stead we just want some set of data in a random order. The math-
ematical term for this is a random permutation. Since C++11,
the library algorithm provides the procedure std::shuffle that, given a
source of randomness23, will reorder data in a collection. 23 i.e. a seeded PRNG

The std::shuffle algorithm is a mutator. Like many algorithm li-
brary procedures, it makes use of iterator objects, a type of object
that acts as an abstract pointer to an element in the collection. We’re
currently working with strings and have been using the integer value
of character indexes to “point” to specific locations in the string. It-
erators to those locations do the same thing but do it with respect
to the specific string in question. Things may make a bit more sense
after seeing a few examples. For the following examples, you can
assume that gen is a default PRNG.



comp 161 lecture notes 18 randomized procedures 9

The first argument to std::shuffle is an iterator to the first item
to be shuffled. The second argument is an iterator to the item after
the last item to be shuffled. So if first is the first argument and last
is the second argument, then std::shuffle will shuffle everything in
[first,last). The third argument to std::shuffle is a PRNG, or some
source of uniform randomness.

We can use the procedure begin to get an iterator to the first item
in a string24 and end to get an iterator to just off the end such that the 24 or any C++ collection

following call to std::shuffle sorts the whole string.

std::string str{"hello world!"};

// shuffle all of str using gen as our source of randomness

std::shuffle(begin(str),end(str),gen);

If begin(str) and end(str) were integer indexes they’d be 0 and
str.length().

To shuffle part of a string we can add and subtract from our iter-
ators to step forward and backward, respectively, from the start and
end of our string.

std::string str{"hello world!"};

// shuffle all but the first and last 3 characters

std::shuffle(begin(str)+3,end(str)-3,gen);

Randomized Procedure Design

The std::shuffle procedure and the use of the application operator25 25 operator()

with distribution objects26 gives us a good design cue for how to 26 dist(gen)

design a randomized procedure in C++. Both procedures use an ex-
ternal source of randomness passed as an argument to the procedure.
The highly stateful nature of PRNGs is also a good indicator that our
random number generating argument is passed by reference. This
makes the design of randomized procedures similar to that of I/O
procedures. Both designs utilize another resource in the system that
is initialized outside of the procedure and then passed by reference to
the procedure.

There is another important advantage to passing the PRNG as
an argument to the procedure: testing. If the PRNG is local to our
randomized procedure, then we’re most likely going to want to use
something like the system time to seed it. This is fine for the actual
application when we want the outward appearance of randomness.
It also means the the randomness of the PRNG and the logic of what



comp 161 lecture notes 18 randomized procedures 10

we’re doing with random values are inseparable. If, instead, we ini-
tialize and seed the PRNG externally, then we can use a seed value
for which we know the behavior. We can save the first n values pro-
duced by the PRNG and evaluate the expected behavior of the pro-
cedure with respect to those values. Put another way, we can remove
randomness from the equation and test the expected results in a com-
pletely deterministic way.

Let’s look at the following procedure.

/*
Simulate rolling n m-sided dice and get the

total of all n dice.

@param n number of dice

@param m number of sides per dice

@param prng instance of the system’s uniform random number generator

@return total from rolling n m-sided dice

@pre prng has been seeded. m > 0.

@post prng produced n new random numbers

*/

unsigned int ndm(unsigned int n, unsigned int,

std::default_random_engine& prng);

To test this we’ll pick a seed value, in this case 1, and generate
some tables relative to this seed27. 27 The program RandTabMaker.cpp was

used for this purpose and the data is in
randData.txtFirst 20 numbers from seed 1:

16807 282475249 1622650073 984943658 1144108930

470211272 101027544 1457850878 1458777923 2007237709

823564440 1115438165 1784484492 74243042 114807987

1137522503 1441282327 16531729 823378840 143542612

First 20 numbers from [1,4] with seed 1:

1 1 4 2 3 1 1 3 3 4 2 3 4 1 1 3 3 1 2 1

First 20 numbers from [1,6] with seed 1:

1 1 5 3 4 2 1 5 5 6 3 4 5 1 1 4 5 1 3 1

First 20 numbers from [1,8] with seed 1:

1 2 7 4 5 2 1 6 6 8 4 5 7 1 1 5 6 1 4 1

First 20 numbers from [1,10] with seed 1:

1 2 8 5 6 3 1 7 7 10 4 6 9 1 1 6 7 1 4 1

First 20 numbers from [1,12] with seed 1:

1 2 10 6 7 3 1 9 9 12 5 7 10 1 1 7 9

1 5 1



comp 161 lecture notes 18 randomized procedures 11

First 20 numbers from [1,20] with seed 1:

1 3 16 10 11 5 1 14 14 19 8 11 17 1 2 11 14

1 8 2

Now that we know what numbers the PRNG will spit out we
can predict exactly what would happen with our procedure with a
freshly seeded PRNG.

std::default_random_engine prng;

prng.seed(1);

EXPECT_EQ(0,ln12::ndm(0,6,prng));

prng.seed(1);

EXPECT_EQ(1,ln12::ndm(1,1,prng));

prng.seed(1);

EXPECT_EQ(5,ln12::ndm(5,1,prng));

prng.seed(1);

EXPECT_EQ(1,ln12::ndm(1,4,prng));

prng.seed(1);

EXPECT_EQ(2,ln12::ndm(2,4,prng));

prng.seed(1);

EXPECT_EQ(11,ln12::ndm(5,4,prng));

prng.seed(1);

EXPECT_EQ(1,ln12::ndm(1,12,prng));

prng.seed(1);

EXPECT_EQ(60,ln12::ndm(10,12,prng));

We can no work out the design for the procedure itself. We’ll go
with iteration and accumulate the total as we “roll” the dice.

unsigned int ndm(unsigned int n, unsigned int m,

std::default_random_engine& prng){

std::uniform_int_distribution<unsigned int> d{1,m};

unsigned int total{0};

for( unsigned int i{0}; i < n ; ++i){

total += d(prng);



comp 161 lecture notes 18 randomized procedures 12

}

return total;

}


	Randomness in Computing
	Psuedo Random Number Generation
	PRNGs in C++
	Uniformly Distributed Randomness in C++11
	Random Permutations and std::shuffle
	Randomized Procedure Design

