
COMP 161 — Lecture Notes 17
Profiling and Complexity

In these notes we look at measuring performance in the real-world as
the experimental counterpart to complexity analysis.

Efficiency in the Wild

Complexity theory and its tools tame the complicated world of ef-
ficient computation. It has proven itself to be an invaluable tool for
understanding and discussing efficient computation. Efficient pro-
grams are designed to minimize complexity. However, minimizing
complexity is only the first step. Within the realm of minimal com-
plexity is a whole host of fine-grained details that drive actual per-
formance. Let’s return to the car comparison. Best practices might let
you guarantee a car with 20–25 miles per gallon fuel efficiency, but
the actual nuts and bolts of how you put that car together are likely
going to be the difference between a real world performance of 20

and 25. The same is true with programming. We must first choose ef-
ficient algorithms1, and then efficiently implement them on systems2 1 low complexity

2 platforms and languagesthat can achieve optimal performance. It’s nearly impossible to build
efficient programs with clever implementation of high complexity
solutions. On the other hand, it’s easy to achieve poor efficiency of
low complexity solutions by making bad implementation choices.

When we assess the complexity of our programs we’re analyzing
the algorithms. When we assess the real-world efficiency of our pro-
gram we’re often profiling its performance. Profiling is concrete
and from the scientific perspective it is the empirical verification of
the underlying (complexity) theory. Profiling is also appealing be-
cause it deals in real world measures. Time is measured by the clock
and space by the byte.

Profiling

Powerful profiling tools exist that for measuring real-world perfor-
mance of programs. For programs written in C++ two candidates are
gprof or valgrind. These tools collect profiling data about the program
by taking measurements as the program runs. In this scenario you’re
attempting to see how the program, as a whole, behaves on typical
data.

If, however, you’re attempting to experimentally verify the effi-
ciency of a specific procedure, then it’s often better to write programs
specifically designed to measure performance. Here we get to choose
a specific range of data that covers the whole spectrum of inputs



comp 161 — lecture notes 17 profiling and complexity 2

from best to worst case. Our primary concern is understanding how
much time it takes procedures to run.

Getting Execution time with chrono

The general pattern for timing code is to check the time prior to code
execution and then again after code execution. You then subtract
the start time from the end time to get the elapsed duration. The
C++11 library chrono provides several classes that can be used to time
the execution of code. There is a complete example for getting the
execution time of a line of code in the example for the now function,
which gets the current time3 3 http://www.cplusplus.com/

reference/chrono/high_resolution_

clock/now/
To get the current time we’ll use a high_resolution_clock::time_point

object. As the name indicates, these objects measure time at a high
resolution4. We can store the difference of two time points as a 4 nano seconds

duration<double> which, by default, tells us the number of seconds
as a double. We can access the number of seconds with the duration
class method, count.

Let’s say we wanted to time the std::find procedure5. Then we 5 aka search http://www.cplusplus.

com/reference/algorithm/find/might build a main procedure with the following:

// search data

std::vector<int> data{1,2,3,4,5,6,7,8,9,10,11};

// get iterators now so they aren’t captured in the timing data

auto data_fst = std::begin(data);

auto data_end = std::end(data);

// Timing Data

std::chrono::high_resolution_clock::time_point start;

std::chrono::high_resolution_clock::time_point end;

std::chrono::duration< double > elapsed;

// Gather a single time data point

start = std::chrono::high_resolution_clock::now();

std::find(data_fst,data_end,9);

end = std::chrono::high_resolution_clock::now();

elapsed = std::chrono::duration_cast< std::chrono::duration<double> >(end-start);

std::cout << elapsed.count() << " secs\n";

This code is simply a modification of the example found in the docu-
mentation for high_resolution_time::now. What it illustrates is that the

http://www.cplusplus.com/reference/chrono/high_resolution_clock/now/
http://www.cplusplus.com/reference/chrono/high_resolution_clock/now/
http://www.cplusplus.com/reference/chrono/high_resolution_clock/now/
http://www.cplusplus.com/reference/algorithm/find/
http://www.cplusplus.com/reference/algorithm/find/


comp 161 — lecture notes 17 profiling and complexity 3

time oriented classes provide all the functionality we need for get-
ting execution time and that we can even do things like subtract time
points using operator-. Operators also work with duration<double>, so
you can add, subtract, multiply and divide durations as needed6. It’s 6 See http://www.cplusplus.com/

reference/chrono/duration/

operators/
also important to note that the time reported by elapsed.count() is in
seconds.

Some notes on chrono

It’s pretty clear from our example the the namespaces and types
involved in the chrono library are quite verbose. One way to make
things easier would be to use a using namespace directive with the
namespace std::chrono. In doing so we clearly highlight the types
and considerably shorten the type declarations. If you go back to the
above example and ignore all the instances of std::chrono, then we find
the following types are used in our profiling code:

high_resolution_clock::time_point http://www.cplusplus.com/reference/chrono/time_point/

duration<double> http://www.cplusplus.com/reference/chrono/duration/

It’s worth spending some time with the documentation for the
classes in order to get a general sense of what they represent and
how they work. We’ll soon be dealing with vectors of durations
and we’ll want to know how to hard code a duration object’s ini-
tial value in order to do things like testing. It’s also a good idea to
scan through the chrono documentation7 in order to get a better 7 http://www.cplusplus.com/

reference/chrono/understanding of what things like high_resolution_clock::now() and
duration_cast do.

Experimental Analysis of Algorithms

Experimental Algorithmics is the experimental arm of al-
gorithm analysis. It empirically tests the theoretical performance
bounds laid down by complexity-based analysis. If you have already
done a complexity analysis and have an expected run time perfor-
mance, then you can use experiment to validate your implementation
against the underlying algorithm’s complexity. Experimental studies
can also guide theoretical analysis. You could build a through pro-
file of the procedure’s run-time and use that to guide a complexity
analysis.

Whether we’re using experimentation to validate theory or in
attempt to discover underlying theoretical properties, we need to
generate a sufficiently robust set of experimental data. Let’s go back
to thinking about std::find and the underlying search algorithm it

http://www.cplusplus.com/reference/chrono/duration/operators/
http://www.cplusplus.com/reference/chrono/duration/operators/
http://www.cplusplus.com/reference/chrono/duration/operators/
http://www.cplusplus.com/reference/chrono/time_point/
http://www.cplusplus.com/reference/chrono/duration/
http://www.cplusplus.com/reference/chrono/
http://www.cplusplus.com/reference/chrono/


comp 161 — lecture notes 17 profiling and complexity 4

employs and think about the data we’d need to properly study this
procedure.

The complexity of std::find

According to cplusplus.com, std::find has the following complexity8: 8 http://www.cplusplus.com/

reference/algorithm/find/

Up to linear in the distance between first and last: Compares elements
until a match is found.

Let’s simplify the discussion a bit by thinking about searching the
entire contents of a vector of integers. This means that the “distance
between first and last” is the same as the size of the vector. In this
case, the complexity is:

Up to linear in the size of the vector: Compares elements until a match
is found.

The first and most important thing to take away from this descrip-
tion is that complexity is a function of the vector’s size. More specifically,
we know that the function is linear. But if the vector’s size is the
function input, then what’s it’s output? We’re talking about time
complexity so what we’re looking at is the number of elementary
operations carried out by the computer. Let’s fill some details in:

The number of elementary operations carried out by the computer
when computing std::find is up to linear in the size of the vector being
searched because std::find compares elements until a match is found.

Earlier I said that we typically think in terms of the worst case. The
language “up to linear” implies that worst case upper bound is lin-
ear. For this reason we call std::find a linear time procedure.

We can express all of this very concisely using mathematics. Let T
be the function that computes the elementary operations carried out
by std::find given the size n of the vector being searched. Then there
must exist some a > 0 and b such that,

T (n) ≤ an + b (1)

When we look at the math, we see how much we’re simplifying mat-
ters. By saying that std::find is linear, we’re ignore the details of the
line9 and simply saying, “I can draw a line such that all the values 9 the value of a and b

of the time function T are on or below that line”. In the next set of
notes we’ll learn Big-O notation which allows us to express this
kind of mathematical information in an even more concise manner.
Big-O notation is the official “language” of complexity. You’ll learn
some basics in this class and continue to use and refine your under-
standing of it as you progress in the major.

http://www.cplusplus.com/reference/algorithm/find/
http://www.cplusplus.com/reference/algorithm/find/


comp 161 — lecture notes 17 profiling and complexity 5

Verifying the complexity of std::find

How can we experimentally verify that std::find is, in fact, a linear
time procedure? Choose some arbitrary but “large” size for your
vector10. Now, imagine you ran all possible searches for all the sizes 10 maybe something like 100000

up to your choosen size and recorded the time it took for each search.
Here we assume that these elementary operations always take some
fixed amount of time so that the real time is just some multiple of
elementary operations. Finally, plot those time points on a graph
where the x-axis is vector size and the y-axis is time. What do you
expect to see?

If you said, “a line” you’re both right and wrong. First off, for
any given size there are many different searches. Look back at the
complexity description:

The number of elementary operations carried out by the computer
when computing std::find is up to linear in the size of the vector being
searched because std::find compares elements until a match is found.

The “compares elements” part implies that we traverse the vector
until we find the item we’re looking for. Sometimes that item is the
first item and sometimes it’s the last. Sometimes it’s in the middle
and sometimes it’s not there at all. If we wanted to be more specific,
then we could identify n + 1 cases for vectors of size n11. On our 11 n locations and not there at all

graph, we’ll see n + 1 points at each size n. It seems highly unlikely
that each of these sub-cases of n will take exactly the same time.
Don’t agree? Let n be 10000000. Do you think it will take the same
amount of time to look at one element (the case where it’s the first
item) as it will to look at all of them (the case there it’s not in the
vector)? I don’t.

Even if it were possible for all n + 1 sub-cases to have the same
running time, we’d have to contend with experimental error. Run-
ning programs isn’t really just a function of elementary operations.
Lots of things can happen in the memory system that affect running
time. The operating system could be multi-tasking and the other
tasks could affect our procedure’s execution. More formally, we have
to expect some noise, some variance from one experiment to the next
even when the inputs are exactly the same.

We won’t see a line because we have multiple data-points (cases)
per x-value (vector size) and our data will be a bit noisy. We also
won’t see “a line” in the data because (worst case) complexity isn’t
about the data, it’s about an upper bound on the data. The line you
should see is the one you can draw just above all of your data points.
This is what we expect to see. This probably means we can find lines
and a general linear shape in the data, but most importantly it means
we can box all of our std::find data into a quadrilateral with sides the



comp 161 — lecture notes 17 profiling and complexity 6

x-axis, y-axis, max size value, and the upper-bound line. This general
shape is what we want to see.

Gathering Data

The data set we need to verify the efficiency of std::find should be
clear. The complete set involves execution times for all n + 1 cases for
each vector size n from [0, m] where m is some suitably large upper
bound on the vector size. This set is so regular that you can12 write 12 and will!

programs to gather it for you automatically. Even still, we need to
understand some issues inherent in this data set and what we can do
with it.

The first problem we see in this approach is that we really don’t
know what happens after m. That’s OK. Mathematics and statistics
will let us make some pretty sound inferences about this unknown
region of std::find’s efficiency. It may also be OK because we sim-
ply don’t care about vectors above a certain size. Either out problem
deals with a fixed max size or sizes above m don’t fit in the com-
puter’s memory and we need a different algorithm anyway.

The second limitation of the data set is that it quickly becomes
unwieldy. We can actually compute exactly how many data points
we’re talking about using some basic discrete math13. 13 you don’t need to know this

math...yet
m
∑

n=0
n + 1 = m + 1 +

m
∑

n=0

= dm2

2
e+ m + 1

(2)

This quadratic function grows pretty fast.
m size of data set
5 19

50 1301

500 125500

5000 12505000

500000 125000000000

Thankfully, we know from statistics that we don’t really need all
of that data to see the pattern. It’s enough to have a representative
sample. What constitutes a representative sample varies a bit from
situation to situation and what, specifically, we’re trying to determine
from the data. In the case of our std::find analysis, we’d like to get
some verification of the linearity of the worst case as well as the
average behavior of the procedure. What we need is a representative
sample of sizes and for each of those sizes a representative sample of
sub-cases.

A classic method for choosing samples is to select at random. In
this situation we’d choose some fraction of [0, m] at random and for



comp 161 — lecture notes 17 profiling and complexity 7

each of those sizes we choose a random fraction of the sub-cases. A
key advantage to this process is that randomness is not biased. If our
goal is to verify the linear complexity of std::find, then we should see
that linear pattern in any sufficiently large random sample. We might
think to only test what analysis tells us is the worst case (key not
found), but this assumes that our theoretical analysis of the algorithm
mirrors the implementation. If we test only the key not found cases,
then we don’t know if some other case just happens to trigger some
kind of unexpected worst case behavior. If we do it right, random-
ness saves us from this bias. We can then apply the same principle to
the sub-cases for each size.

On the other hand, we do know about some underlying structure
in this problem. Size 0 and size m really are bookends to the space
that we’re exploring, so it makes sense to test them specifically. With
this in mind we could compromise by testing size 0 and m then do-
ing a random sample of (0, m). We can do the same thing with the
size sub-cases. Test when the key is the first and when it’s not found
(our expected best and worst) and then test a random sample of
when the key is at an index in (0, n) for vector size n. The key here is
that we’re utilizing structures found in the overall problem to guide
our sample selection.

If we know something about the implementation, then we might
use those structures to guide the sampling as well. If the search pro-
ceeds in the standard zero to size fashion, then rather than randomly
select key locations we might just choose evenly spaced out cases. In
this case we might test the cases where the key is at an index that is
a multiple of 3. This covers 1

3 of the total cases and should paint a
pretty clear picture of how the search plays out as we do more and
more repetitions of the loop. Of course, this kind of targeted sam-
pling is possible only when we can control the procedure inputs. For
some problems it’s hard to specifically select this intermediate, aver-
age cases. In these situations, we have to rely on randomly generated
inputs.


	Efficiency in the Wild
	Profiling
	Experimental Analysis of Algorithms

