
COMP 161 — Lecture Notes 16
Analyzing Search and Sort

In these notes we analyze search and sort.

Counting Operations

When we analyze the complexity of procedures we’re determine the
order of the number of primitive operations performed in the worst
case of the procedure. Primitive operations are the operations we call
on primitive data types. We count one such operation as one unit of
work1. Almost all the operators we’ve encountered are primitive, but 1 The reality is that they are O(1)

hardware operations, but we ignore
that because we’re drawing the line at
primitive C++

in C++ programmers can provide new definitions for operators so we
must be careful about the assumption that all operators are primitive.

Search is Linear Time

So how good is our search and is there a difference between the
iterative and recursive implementations. To answer this we first turn
to complexity analysis to see how each implementation is classified.

Iterative Search

Let’s start by re-introducing ourselves to the search code shown in
figure 1.

1 int search(const std::vector<int>& data,int fst, int lst, int key){

2

3 for(unsigned int i{0}; i < data.size() ; ++i){

4 if(data[i] == key){

5 return i;

6 }

7 }

8

9 return -1;

10 }

Figure 1: Search: Iterative Implementa-
tion

The first question of complexity analysis is what’s the worst case
scenario for this code? By this we mean, for what inputs will we
maximize the work done? Looking a the code we see that either
the loop runs to completion and the function returns -1 or it will
terminate early and return the current value of i. Computational
work will, therefore, be maximized when the loop completes and this
occurs when the key is not in the vector. From here we can see that

comp 161 — lecture notes 16 analyzing search and sort 2

when the key is in the vector, then we’ll do less work the closer the
key is to the 0 location.

Now that we know the worst case occurs when the key isn’t
found, we can start counting up the work. This is where Big-O steps
in. We’ll count up work in pieces, determine the order of each piece,
and then use the sum rule to reduce the total order of the procedure.
All of the work done by this procedure is done by the loop, so this is
really an example of loop analysis. To understand the work carried
out by the loop we address three questions:

1. How much, if any, work is done but not repeated?

2. How many times does the loop repeat itself?

3. How much work is done per repetition?

If a loop repeats itself n times, does k work per repetition and c work
outside of that, then the total work is kn + c. If k, n, and c are all
constants then we’re looking at some constant amount of work. For
example, exactly 5 repetitions of 10 operations with 3 other opera-
tions on the side is just O(53) = O(1) work. If, however, some of
these values vary, then the loop is more complexity then constant.

A for loop has two parts that are done regardless of the number
of repetitions: the initialization statement and one instance of the
loop continuation check. The continuation check is the one check
that must be false in order to terminate the loop. For search this is
the initialization of i and one check that i is less than the size of the
vector data. The initialization and the comparison itself are both
primitive, so that’s a constant number of operations2. Determining 2 2 = O(1)

the size of a vector requires a std::vector method. A quick check
of the std::vector reference tells us that the complexity of the size
method is constant. Maybe it’s 5 operations, maybe 500. Either way,
the actual size of the vector doesn’t influence the cost of looking up
its size. All told, the operations not repeated by the loop itself but
part of the loop structure are constant, or O(1).

Now, let’s address the work repeated by the loop before we figure
out the number of operations. Every time the for loop repeats it will
do the continuation check and the update. We already know the
continuation check is O(1) operations. The update is just i ++ which
is one assignment and one addition3, or just a constant, O(1) number 3 i = i + 1

of operations. So far we know that the repeated code used by the
loop itself is O(1) operations per repetition. Now we look at the
body of the loop. Every time the loop repeats the conditional check
is done. This requires selecting the ith integer with the std::vector
operator[] and then comparing it to another integer with primitive
integer ==. The comparison is a single operation and if we look up

comp 161 — lecture notes 16 analyzing search and sort 3

operator[] in the vector reference we see it too is O(1). Combining
the O(1) operation inside the loop with the O(1) operations done to
control the loop gives us O(1) + O(1) = O(1 + 1) = O(2) = O(1)
operations.

Finally, we must determine how many times the loop repeats. If
we start at 0, count up by 1, and stop after i = data.size() then we’ll
do one iteration of the loop for every element of the vector. This was
maybe obvious because that was our goal for the loop, to traverse
and visit every single location in the vector. If n is the size of the vec-
tor, then this loop repeats n = O(n) times in the worst case scenario
when the key is not contained in the vector. Each repetition requires
O(1) work for a total of O(n) ∗O(1) = O(n) work. Iterative search has
a complexity that is linear in the size of the vector we are searching.

Recursive search

The recursive search is spread across two procedures as shown in
figure 2.

1 int search(const std::vector<int>& data,int key){

2 return search(data,0,data.size(),key);

3 }

4

5 int search(const std::vector<int>& data,int fst, int lst, int key){

6 if(fst >= lst){

7 return -1;

8 }

9 else if(data[fst] == key){

10 return fst;

11 }

12 else{

13 return search(data,fst+1,lst,key);

14 }

15 }

Figure 2: Search: Recursive Implemen-
tation

Analyzing the recursion itself requires a combination of knowing
how to handle the use of helper procedures and knowing how a
recursive process is carried out by the computer. The top level search
function makes a call to the more general, recursive search. While
we can’t know the exact complexity of the process carried out by this
search without knowing how the recursive helper behaves, we can
fully understand the work done by the top-level search and not a part
of the recursion. Before the recursive call is made we determine the
size of the vector data, that’s it. This means the two argument, top-
level search does a constant, O(1), amount of work plus whatever the

comp 161 — lecture notes 16 analyzing search and sort 4

recursive call with will do given its parameters. That’s it.
In general, it’s important to be able to say something definitive

about a procedure’s complexity in the face of uncertainty about
helper complexity. As the search example demonstrates, it’s sim-
ply a matter of identifying the work done outside the helper. We can
actually go further with this search. If the recursive search is any-
thing other than constant complexity, then we know that the work
done by that recursion will dominate the O(1) work done outside
the recursion.4 If the recursion itself is constant, then the sum total is 4 the sum of two different classes is the

max of the classesconstant5. This means that the top level search complexity will be as
5 the basic sum rule of Big-O

complex as the recursive helper, no more no less.
Now we must manage the recursive version of search. Let’s begin

with the exact strategy we used for the top-level function and iden-
tify the complexity of all the work done outside of the recursive call.
Under what circumstances is this work maximized? To answer this
we need to look carefully at the conditional. The more conditions
that fail, the more work done by the conditional because every test
must be carried out. So the conditional itself will do the maximum
amount of work with the if and else if condition are false. In that case
each comparison requires O(1) work6. The body of the else then re- 6 so in complexity terms best and worst

are the same O(1)quires another addition before the recursion, so we’re still looking at
some constant, O(1), work. All told, each time search is called in the
course of the recursion, it will perform O(1) work. Figuring this out
leaves us with one question: how many times does this procedure
call itself?7 7 notice the overall strategy here is

the same as the loops: separate work
repeated from repetition then combine
that information

At this point we need to be clear about the mechanics of recursion.
On one hand, it behaves no differently than any other procedure call,
but on the other hand the procedure is calling itself and managing
this sameness and otherness can take practice. Let’s say we start
with a vector containing {3, 1, 7, 5} and we’re searching for the key 2.
This is an example of the worst case where the search key will not be
found. The first call to the recursive search has f st = 0 and lst = 4.
This instance of search makes a call with f st = 1 and lst = 4, that
instance make call with f st = 2 and lst = 4, and so on until finally
the base case is reached where f st = lst = 4. At this point each search
returns -1 to the search in which it was called until finally the first
instance returns -1 and the recursive chain is done as seen in figure 3.

The important thing to notice here is that for any value of f st >

lst, search will call itself recursively while increasing f st by one such
that f st will reach lst eventually and cause the procedure to begin
returning back to the original call to search. If each call adds one to
f st then n calls adds n and we need to determine when f st + n = lst
because at that point the recursion stops. It’s clear that n = lst −
f st. This is exactly the size of the region being searched. We now

comp 161 — lecture notes 16 analyzing search and sort 5

search(data,2,0,4)
↪→ search(data,2,1,4)

↪→ search(data,2,2,4)
↪→ search(data,2,3,4)

↪→ search(data,2,4,4)
search(data,2,3,4) ← -1←↩

search(data,2,2,4) ← -1←↩
search(data,2,1,4) ← -1←↩

search(data,2,0,4) ← -1←↩
← -1←↩ Figure 3: An example sequence of re-

cursive search calls for data = {3, 1, 7, 5}
know that in the worst case, recursive search calls itself once for
every element in the search region. For each of those calls a constant
amount of work will be done. For a search region of size n8, search 8 again: n = lst− f st

will do a total of O(n) ∗O(1) = O(n) work. So, to search the entire
vector for the key we first do O(1) work then call the recursive search
which does linear in the size of the vector work. Recursive search is
no more or less complex than iterative search.

Recurrence Relations (OPTIONAL)

To determine the complexity of the recursive search we analyzed the
recursion in the same way that we analyzed loops: determine the
work done per repetition, determine the amount of repetition, then
combine the results as a product. There is a formal way of managing
the analysis of recursive procedures using recursive mathematical
functions. You’ll learn this in Discrete Math and use it more ad-
vanced CS courses but I’ll give you a quick taste of it here.

Let’s say that T is the time function of our search procedure such
that for searching a vector region size n = lst − f st, T(n) is the
time complexity of search. The base case occurs when n = 0 and
in that case we find that search does a constant amount of work, or
T(0) = O(1). For n > 0, we see that the procedure does a constant
amount of work then makes a recursive call to search a vector region
of size n− 1. We express this with the recurrence relation

T(n) = T(n− 1) + O(1)

Our goal now is to solve this equation in such a way as to remove the
recursion of T on the right hand side. One way to do this is simply to

comp 161 — lecture notes 16 analyzing search and sort 6

unwind the recursion in order to discover the pattern.

T(n) = T(n− 1) + O(1)
= (T(n− 2) + O(1)) + O(1) = T(n− 2) + 2(O(1))
= (T(n− 3) + O(1)) + 2 ∗O(1) = T(n− 3) + 3(O(1))
= (T(n− 4) + O(1)) + 3 ∗O(1) = T(n− 4) + 4(O(1))
= . . .
= T(n− k) + k ∗O(1)

At this point we see that after k recursive calls we’ve accumulated
k units of constant work. When k = n then we reach T(0) and find
that T(n) = T(0) + O(n) = O(n) work is done. Many techniques
exist for solving recurrence relations. The one demonstrated here
is really just a more formalized version of the analysis that we did
when analyzing recursive search.

Insertion Sort is Quadratic Time

Given that we’re utilizing the same techniques to solve sort that we
did to solve search, it should come as no surprise then that the analy-
sis of sort follows the same path as that of search. The key difference
will be that sort requires a non-trivial helper insert. Just like we did
when managing the recursive version of search, we’ll avoid getting
overwhelmed by analyzing insert and sort independently and then
when that’s done we’ll combine what we know to get a complete
picture of the complexity of insertion sort.

Iterative Insertion Sort

Take a look at figure ?? and reacquaint yourself with the iterative
implementations of both sort and insert.

The analysis of the sort procedure itself is pretty strait-forward
if we set aside the work done by insert. The only work that is local
to sort is the loop and that loop is a now familiar linear time loop.
In this case there is no possibility of returning prior to violating the
loop continuation condition, so for a vector of size n, this loop will
always produce a O(n) work. Put another way, there is only a single
case for sort: call insert n− 1 times. As a whole, this means sort has
complexity no better than linear in the size of the vector because it
takes at least that to drive the loop for insert.

The insert procedure works by systematically inserting the element
that begins at data[lst] into the region of data running from fst to lst-
1 by swapping down from lst-1 to fst. The loop and the procedure
can stop early if data[i+1], the item originally at data[lst], is greater
than or equal to data[i]. Otherwise the loop goes to completion and

comp 161 — lecture notes 16 analyzing search and sort 7

1 void iter::sort(std::vector<int>& data){

2

3 for(unsigned int i{1}; i < data.size(); i++){

4 iter::insert(data,0,i);

5 }

6 return;

7 }

8

9 void iter::insert(std::vector<int>& data,

10 unsigned int fst, unsigned int lst){

11

12 for(unsigned int i{lst-1}; i >= fst && i < data.size(); i--){

13 if(data[i+1] < data[i]){

14 std::swap(data[i],data[i+1]);

15 }

16 else{

17 return;

18 }

19 }

20 return;

21 }

22 \label{code:isortiter}

23 \caption{Sort \& Insert: Iterative Implementations}

traverses the entire insertion region. This means that the worst case
occurs whenever the loop goes to completion which happens when
the element being inserted is less than all the values in the insertion
region. We can simplify the discussion of the complexity of insert
by recognizing that the total work here is driven by the size of the
insertion region which is n = lst− f st + 19. 9 the +1 this time is due to the inclusion

of lstWhen the worst case of insert occurs, the loop traverses the entire
insertion region of size n = lst− f st + 1 = O(lst− f st) = O(n) time.
We know this because it’s the now all to familiar traversal by steps of
size one loop that we’ve used time and time again10. The work on the 10 Notice the continuation condition of

this loops is more expensive than usual
but only by a constant amount, which
washes out in Big-O

inside of the loop will, in the worst case, require the comparison of
two vector elements, O(1) work, and a swap of those two elements.
A quick check of the C++ reference tells us that this form of std::swap
requires constant time11. Thus, the total work done on each iteration 11 temp = a; a = b; b = temp;

of the loop is O(1), the loop does O(n) iterations, and the total work
needed by insert is linear in the size of the insertion region.

We now know that insert does work that is linear in the size of the
insertion region and that sort calls insert once for all but one of the
vector elements. The real trick here is that each time sort calls insert
the region of insertion grows by one. The work done by insert is
dependent on the value of sort’s loop counter variable i. At this point

comp 161 — lecture notes 16 analyzing search and sort 8

we need to look for a pattern in the work done by insert and use it to
determine the total work done by all the inserts. The key observation
is that the size of the insertion region grows by 1 each time. It starts a
size 1 and stops after inserting into a region of size n− 1 for a vector
of size n. The total work done by every call to insert will then be sum
of a series of insertions with an incrementally increasing work load,
namely:

O(1)+O(2)+ · · ·+O(n− 2)+O(n− 1) = O(1+ 2+ · · ·+(n− 2)+ (n− 1))

We must now be very careful as this isn’t like the other sums
we’ve dealt with while doing complexity analysis. The number of
terms in this sum varies with n, and, in fact, it has exactly n− 1 terms
to it.

This kind of increasing sum is incredibly common in complexity
analysis and in mathematics generally. It’s what’s called an arith-
metic series. In mathematics it can be written very compactly
using summation notation as shown in equation 1.

n

∑
i=0

i = 0 + 1 + · · ·+ (n− 1) + n (1)

The problem we currently have is that the series we’re dealing with
is open expression12 and we don’t know it’s exact value. What we 12 variable number of terms

need is a closed-from expression
13 for this series that would let 13 fixed number of terms

us calculate it’s exact value and order.
Before we go about solving for the closed form of this expression,

we can intuit our way to an upper and lower bound. We know that
we’re dealing with a series of n− 1 terms with the minimum of 1 and
a maximum of n − 1. What if each of them were just 1? Well then
we’d just have a very long winded expression for (n − 1)14 which 14 (n− 1) 1’s added together is (n− 1)

is O(n). So certainly our series is no better than linear. Maybe we
already figured that was the case. What if each term were (n − 1)?
Then we’d have (n− 1) occurrences of (n− 1) or n2 − 2n + 1 which
is O(n2). So this series is no worse than quadratic. This worst case,
quadratic upper-bound logic actually gives a real clue as to the exact
nature of the series.

Imagine an (n− 1) by (n− 1) square. This square represents the
sum of (n − 1) terms each equal to (n − 1) where each column is
a term and the height of the column is the term’s value. The area
of this square is the total of the sum. Now, what would our series
look like? It’d be a triangle where the first column is height 1, the
second is 2 and on to the (n− 1)th column of height n − 1. Once
again, the area of this triangle is the total of our sum. This triangle
just so happens to be the right triangle that comprises half of our

comp 161 — lecture notes 16 analyzing search and sort 9

(n− 1)× (n− 1) square. It’s area is, therefore,
n2 − 2n + 1

2
which is

O(n2). Returning back to our sort, we now know that the total work
done by all the calls to insert is O(n2), quadratic, for a vector of size
n. Adding this to the linear work done by the loop that drives the
inserts, we find that our iterative insertion sort is quadratic in the size
of the vector.

Before we move on let’s go back to that series and see if we can’t
tease out a closed form using something similar to our triangle logic.
Let’s say we take the basic series that sums from 0 up to n. It has
n + 1 terms. We don’t know what the exact value of the sum is but
let’s call it S . What happens if we add it to itself. Obviously we have
2S , but there is something interesting we can see about 2S if we flip
one of the series around. As we see in figure 4, each term is equal to
n and the total must then be n(n + 1).

(0 + 1 + 2 + · · · + (n− 2) + (n− 1) + n)

+ (n + (n− 1) + (n− 2) + · · · + 2 + 1 + 0)

(n + n + n + · · · + n + n + n) = n(n + 1)

Figure 4: Adding S to itself

Of course, this n(n + 1) is twice as much as we want so we simply
divide by two and get S . We now have a closed form for the series as
well as the Big-O of the series as shown in equation 2.

n

∑
i=0

i = 0 + 1 + · · ·+ (n− 1) + n =
n(n + 1)

2
= O(n2) (2)

For insertion sort we had an initial value of 1, not 0, and a terminal
value of n− 1, not n. Not including 0 doesn’t really change anything
and we can simply plug n− 1 in for n.

n−1

∑
i=1

i =
n(n− 1)

2
= O(n2)

We got this result another way, but now that we know the closed
form for arithmetic series we can use it whenever we encounter it in
complexity analysis.

Recursive Insertion Sort

Figure 5 lists all the code for the recursive implementation of inser-
tion sort.

This analysis is based entirely on ideas we’ve encountered before.
The top-level sort does a small constant amount of work. The recur-
sive sort will do a constant amount of work per recursive call and

comp 161 — lecture notes 16 analyzing search and sort 10

1 void recur::sort(std::vector<int>& data){

2 recur::sort(data,0,data.size());

3 return;

4 }

5

6 void recur::sort(std::vector<int>& data,int fst, int lst){

7 if(fst >= lst-1){

8 return;

9 }

10

11 recur::sort(data,fst+1,lst);

12 recur::insert(data,fst,lst-1);

13 return;

14 }

15

16 void recur::insert(std::vector<int>& data,

17 unsigned int fst, unsigned int lst){

18 if(fst >= lst){

19 return;

20 }

21

22 if(data[fst] > data[fst+1]){

23 std::swap(data[fst],data[fst+1]);

24 recur::insert(data,fst+1,lst);

25 }

26

27 }

Figure 5: Sort & Insert: Recursive
Implementations

comp 161 — lecture notes 16 analyzing search and sort 11

will call itself recursively n − 1 times for a vector of size n. We can
tell because the recursive call increments f st by 1 and recursion ter-
minates when f st = lst− 1. The initial values for fst and lst were 0

and the size of the vector respectively. Just like with recursive search,
this means one recursive call to sort per element in the vector15. This 15 this is the intent of basic recursion

after all, to manage/sort one element at
a time

means that all the work done by sort but excluding the work done by
insert must be linear in the size of the vector.

Insert exhibits the same kind of linear recursive pattern we saw
from sort. In the worst case, it will call itself once per element in
the insertion region by incrementing fst by one with each call and
pushing it towards lst. With each call to insert a constant amount of
work is done. Thus we see that recursive insert is, like it’s iterative
counterpart, linear in the size of the insertion range.

Finally, we must account for all the work done by all the calls to
insert. Each of the n calls is done on regions of decreasing16 size. 16 or increase if you’re thinking about

the actual order in which they get
called as opposed to the order in which
sort gets called

The first insert has a region of size n − 1 and the last has a region
of size 1. We know this pattern. We just solved this pattern. It’s the
arithmetic series and it’s O(n2). So, just like the iterative insertion
sort, recursive insertion sort requires work that is quadratic in the
size of the vector.

	Counting Operations
	Search is Linear Time
	Insertion Sort is Quadratic Time

