
COMP 161
Lecture Notes 12
UI Loops
March 26, 2017

In these notes we look at some basic user interface loop patterns.

Loops at the User Interface Level

The only loops we’ve looked at so far arose from the need to step
through or traverse the characters in a string1. Several situations 1 or more generally the elements of a

collectionoccur in interactive programs that require the repetition of user inter-
actions:

• The program repeats a single process until the user hard-quits the
program. This requires an infinite loop.

• An alternative to forcing a hard-quit from the program is prompt
the user after each execution of the core task to see if they’d like to
quit. Another form of this is to offer a menu of choices with a quit
option. In both cases, we’re effectively replacing an infinite loop
with a loop that terminates on a specific user input. We’ll call this
the until-quit loop as it will repeat until the users chooses to quit.

• The program requires a specific input from the user, like a number
from one to ten, and so it gets a single input, checks or validates
it, and if it doesn’t meet the criterion, then it reports an error and
restarts the process. This is what we’ll call a validation loop.

We’ll explore the design of each of these loops below.

Infinite Loop

As we’ve already seen, a simple infinite loops provides the means to
developing a basic REPL2 interface. Such an interface lets the user 2 Read, Evaluate, Print, and Loop

repeat a task over and over. Either the while loop or the do while
loop can be used as seen in Figure 1 and Figure 2.

while(true){

//repeated process here

}

Figure 1: An infinite while loop

We’ve mostly dealt with simple, state-less tasks in which each
repetition is independent of the last. There is no requirement that the

comp 161 lecture notes 12 ui loops 2

do{

//repeated process here

}while(true);

Figure 2: An infinite do while loop

repeated process be state-less however. The simple game from lecture
notes 10 used an infinite loop to manage and modify the state of the
game. This allowed us to develop a system in which we continually
interact with and modify the program state from one iteration of the
loop to the next.

The downside of the infinite loop is the fact that it never ends. The
only way to terminate such a process is from without. In a Linux
command-line environment we use Ctrl-C to kill the currently ex-
ecuting program and return to the shell. That is, we use interrupts
at the operating system level to halt the execution of our program.
This is usually not ideal. Imagine you wished to save the game state
in order to pick up where you left off next time you run the game.
Killing the programming does not allow for this. Instead, we need
the program to manage its own termination.

Until-Quit Loop

A simple addition to the infinite loop is logic necessary to allow the
user to terminate the program directly. This usually means adding
a simple I/O sequence asking if they’d like to end the program or
conversely if they’d like to quit.

If at least one user interaction is required to terminate the loop
and thereby the program, then a do while loop makes perfect sense
as it is designed to repeat one more more times3. In Figure 3 we see 3 the for and while loops do zero or

more repetitionsan example of a basic do while loop for user directed termination. A
boolean variable is used to track the state of the loop. If it’s true, then
the loop should continue, if not, the loop terminates. We’ll call these
kinds of booleans flags.

Notice that with the addition of the continuation flag, this loop
takes on the same fundamental, iterative structure as our count-
ing loops. There is a state variable, continuation, the loop carries
out some process, updates the state variable, and terminates when
the state variable reaches a particular state. In this case, the state is
boolean and updated at the whim of the user. The loop will termi-
nate if and and only if the user enters something that the computer
reads as the y character. Counted loops, when written properly, can
typically be analyzed such that we know exactly how many repeti-
tions will occur prior to termination.

comp 161 lecture notes 12 ui loops 3

// This boolean acts as a flag for the state of the loop

bool cont{true};

do{

// Do Core Repeatable Task

// Prompt for Continuation

char uin{Y};

std::cout << "Continue?(Y or N) ";

std::cin >> uin;

// Update Continuation Flag

cont = (uin == ’Y’) || (uin == ’y’);

}while(cont);

Figure 3: Example of an Until-Quit do
while loop

Input Validation

Imagine you’re writing a menu-driven program. Users must select
one of 10 menu options by entering a number between one and ten.
What should we do when they give us something other than one
of these numbers? We can terminate the program with an error,
but that’s a bad idea from a usability standpoint. A better, more
humane idea is to report the error to the user and prompt them to
try again. This UI process is captured by an input validation loop.
This loop will get an input from the user, validate the input against
some condition, and repeat if the input is invalid. Figure 4 gives an
example of such a loop.

A key distinction between validation loops and the other loops
we’ve explored is that it’s not meant to carry out some repeated
core computational task, it’s used to guarantee that the task can
proceed with its preconditions met. We might, we’ll often want to
put a second loop around the validation loop to repeatedly get and
use valid inputs from the user.

Program Design and UI Loops

As always, we should generalize the overall processes discussed here
as procedures. In this case, the procedure abstracts away the loop and
allows us to put that process to use in a larger context. A decent rule
of thumb is to always place loops inside their own procedure. We
shouldn’t follow this without some reasoning behind it though.

Let’s consider a toy example.

A user is repeatedly prompted for a number between one and five. The

comp 161 lecture notes 12 ui loops 4

int uin{0}; //initialize state

bool invalid{false}; //initialize validation flag

do{

std::cout << "Enter a Number from 1 to 10: ";

std::cin >> uin;

invalid = (uin < 1) || (uin > 10);

if(invalid){

std::cout << "Expected a number between 1 and 10 but got "

<< uin << ’". Please Try Again.\n";

}

}while(invalid);

// Do something relative to the value of uin.

Figure 4: Example of an Validation do
while loop

numbers they enter are multiplied together. After each number entry
they are prompted to see if they want to quit. When they quit, the final
product is printed out.

This problem can clearly makes use of an until-quit style loop to
manage repeatedly getting numbers and updating the product. Get-
ting a valid number requires a validation loop. We could just cram
all of this in main, but we should break it down to basic procedures
instead. To do this we must first identify the program’s state.

This toy program manages a product of integers as the user adds
new numbers to the product. Thus, the state is a single integer. The
state of the program provides an anchor to our design. In the main
procedure we can declare an initialize state. From there we hand it
off to a series of procedures. First, we consider the main loop. What
does it do? How to we categorize it’s behavior4? It will create some 4 Functional, Mutator, Input, or Output?

output, request some input, and modify the program’s state. It is
therefore a hybrid of all our effects. In Figure 5 we see how we’d put
it to use in as a helper to main.

int main(int argc, char* argv[]){

int product{1};

toy::mainloop(std::cout, std::cin, product);

std::cout << product << ’\n’;

return 1;

}

Figure 5: The main procedure for our
product program

The procedure mainloop carries out the core loop that repeats until

comp 161 lecture notes 12 ui loops 5

the user quits. This task requires two more loops: one to get and
validate the next number and one to get and validate user input for
continuing or terminating the loop. These loops can be tucked away
into helpers as well. In Figure 6 we see one way of organizing this
logic.

void toy::mainloop(std::ostream& sout, std::istream& sin,

int& prod_state){

bool cont{false};

do{

// Get the next user input. Validate.

int nextNum{1};

toy::getValidNextNum(sout,sin,nextNum);

// Update the product with the nextNum

// Could use Mutator! toy::updateProd(prod,nextNum);

// but it’s simple enough...

prod_state *= nextNum;

// Get Continuation. Validate.

toy::getValidContVal(sout,sin,cont);

}while(cont);

return;

}

Figure 6: The

In Figure 7 we see an implementation of the procedure for getting
a valid number from the user. We could break this apart into atomic
procedural units, but it’s pretty straight forward from here so we’ll
just get right to it. Notice we hold off on updating the state until
we’ve validated the user’s input. This is good, safe programming that
guarantees that so long as the state was initially valid it will never
take on an invalid value.

By organizing the program design around the core state variables
we can begin to design the program around the effects related to
that state. This can lead to highly effect-driven designs, but as we
saw in lecture notes 10, we can often bend effect-driven problems
around to functional problems by designing functional procedures
that return new state values and strings for output. Input can be
made functional by returning the user input rather than setting the
variable directly. Experiment with both options. They both have
merits and are worthy tools for your program design tool box.

comp 161 lecture notes 12 ui loops 6

void toy::getValidNextNum(std::ostream& sout, std::istream& sin,

int& next){

bool invalid{false};

do{

sout << "Enter a number between 1 and 5: ";

int uin{0};

sin >> uin;

invalid = !(uin >= 1 && uin <= 5);

if(invalid){

sout << "Expected a number between 1 and 5. Got "

<< uin << ". Please Try Again.\n";

}

else{

// Don’t update the state until it’s validated

next = uin;

}

}while(invalid);

return;

}

Figure 7: The procedure
toy::getValidNextNum

	Loops at the User Interface Level
	Infinite Loop
	Until-Quit Loop
	Input Validation
	Program Design and UI Loops

