
COMP 161 - Lecture Notes - 11 - Iterative and Re-
cursive Procedures for Strings
Spring 2016

In these notes we look at developing iterative and recursive implemen-
tations of procedures for Strings. These problem solving and program
design principles generalize to sequential structures like lists, vectors,
and arrays.

The problem: a toupper for std::string objects

The C char type library1 contains a procedure for converting a lower- 1 called cctype

case alphabetic char to its uppercase counter part. Let’s first imagine
this problem in two ways and capture our thinking as procedure
declarations in C++.

As a functional problem we’d imagine taking a string object, com-
puting the uppercase version of that string as an entirely new object,
and returning that new object. In doing this we can focus our logic
purely around string objects as values2. 2 r-values really

/**

* strToUpper compute the uppercase version of std::string str

* @param str the string

* @return str in all uppercase

* @pre str is composed of alphabetic characters only

* @post none

*/

std::string strToUpper(std::string str);

Now we come up with tests both as a way to explore concrete
examples of the problem and for testing out implementation when
we finally complete it.

TEST(strToUpper,all){

// empty case

EXPECT_EQ(std::string(""),strToUpper(std::string("")));

// other cases

EXPECT_EQ(std::string("A"),strToUpper(std::string("a")));

EXPECT_EQ(std::string("DOG"),

strToUpper(std::string("dog")));

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 2

EXPECT_EQ(std::string("CAT"),

strToUpper(std::string("Cat")));

}

Now let’s re-imagine this problem as one of mutation. Our goal
now is to physically change one particular string object. This con-
stitutes a shift in thinking from r-values to l-values. Notice how the
name and purpose of the procedure reflect our new perspective on
the problem.

/**

* setStrToUpper changes all the letters of std::string str

* to their uppercase counterparts

* @param str the std::string object getting modified

* @return none

* @pre str is composed of alphabetic characters only

* @post str is now the same letters, in the same order, but uppercase

*/

void setStrToUpper(std::string& str);

Once again, the new way of thinking requires a new way of test-
ing.

TEST(setStrToUpper,all){

std::string s{""};

setStrToUpper(s);

EXPECT_EQ(std::string(""),s);

s = std::string("to");

setStrToUpper(s);

EXPECT_EQ(std::string("TO"),s);

s = std::string("DO");

setStrToUpper(s);

EXPECT_EQ(std::string("DO"),s);

s = std::string("hEllO");

setStrToUpper(s);

EXPECT_EQ(std::string("HELLO"),s);

}

So, how do we implement these procedures? Logically, we know

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 3

we could just apply the cctype function toupper to each character in
the string. Doing this first means working with std::string data as a
sequence of char data. Thus far we’ve mostly treated it as something
that’s more struct-like. Once we know how to work with the string as
a sequence of data, then we need to know how to setup code repeti-
tion for that sequence. The two main3 tools we have in programming 3 only?

to capture code repetition is a Recursive Procedure
4. and Itera- 4 sometimes we just say recursion

tion. A recursive procedure is a procedure that calls itself and is by
its very nature repetitive. You used these exclusively in Racket. We’ll
review some basic strategies and talk about using them in C++. We’ll
also look at recursion for effect when we implement the mutator
setStrToUpper.

Iteration is a new strategy for you. When we iterate we typically
invoke the notion of time and the accumulation of state. The idea is
that as our code repeats it incrementally accumulates the solution in
such a way that the accumulated solution at the time of termination
is the final solution. Iteration works really well in imperative envi-
ronments where time and state are readily available. It can also be
managed via recursive procedures; we’ll explore this a bit but not
spend much time with it until we really need it.

The thing to keep in mind before we get into the details of re-
cursion and iteration it’s important to realize that these things are
techniques for solving problems that involve repetition. They’re
generic strategies that often lead to solutions to problems. We began
by imagining our problem as being a functional problem or a muta-
tion problem. We’re not shifting our thinking towards the solution,
the implementation. This mental separation of problem (declaration)
and solution (implementation) is vital to long term success in com-
puting. Poorly specified problems are difficult or impossible to solve
and the ability to try different implementations and compare these
options leads to the real science of computing.

Strings as Recursive Structures

Recursion is not just a way to solve a problem. We can apply recur-
sive thinking in order to understand the structures inherent in our
data. You saw this with lists in Racket. Once you’ve identified recur-
sive structure in you data, you can often use that a guide in writing
a recursive procedure to solve a problem involving that data. We’ll
work through this as we solve our std::string toupper problem. You
should also reflect back on all the recursive Racket code you saw and
see how the same logic plays out in that environment.

Racket lists were your introduction to recursively structured data.
Let’s review them by looking at a list of numbers:

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 4

A List of Numbers (LoN) is :

- empty

- (cons fst rst)

Where fst is a number ans rst is a LoN.

In plain English:

A list of numbers is either the empty list or a list with two parts, the
number fst and the list of numbers rst.

The recursion is pretty obvious. Non-empty lists contain other lists5 5 which can be empty or not, and if not,
they have a rest which is either empty
or not, etc. etc.

It’s easy to fixate on the recursion and forget all of the other equaly
important stuff. Some lists, empty lists, are non-recursive. We call
this variant of the LoN the base case because all other variants use
this form of list must as their basis. All recursive structures must have
non-recursive base cases. When lists are not-empty, then they’re broken
down into a struct like form with multiple pieces where each piece
is some part of the whole. All recursive structure must decompose the
structure as part of the recursive variant of the structure.

We can apply this exact structure to std::string data. The empty
string is std::string(""). You can recognize it with the class method
empty()6. You can select the first of a non-empty string s with s[0] 6 or check for a length of 0

or s.at(0). The rest of the string is s.substr(1). The cons function is
effectively replaced by the append operator + as std::string(1,s[0])7 + 7 notice we need to use the fill construc-

tors.substr(1) reconstructs the string s.
The first and rest logic we learned from lists is great. It was neces-

sary with Racket lists because those were the only selectors we had.
We are not always so restricted in how we recursively decompose
data. We can do last and but last8. We have to be careful now. For this 8 everything except the last

to work s.substr(0,-1) must return the empty string. It does not. To fix
this we can rethink our base case. If the non-recursive case is the sin-
gleton string, the string of length 1, then this works. This limitation is
not one of the last/but-last recursive structure but of our std::string
selection methods. So, for strings of length at least two, then we can
recursive decompose as follows.

s = s.substr(0,s.length()-1) + std::string(1,s[s.length()-1])

The key observation is you can define recursive structure in many
ways and you can actually identify several different base cases. We’ll
play with alternatives from time to time. Just be on the look out for
different ways of capturing recursive structure of data.

Functional, Recursive strToUpper

If you’ve identified the recursive structure of your data, then you
can map a recursive procedure to that structure. Let’s build this
definition up one piece at a time. First, a stub.

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 5

std::string strToUpper(std::string str){

return std:string("");

}

We begin by recognizing that strings are itemized: they’re either
empty or they’re not.

std::string strToUpper(std::string str){

if(str.empty()){

...

}

else{ //not empty

}

}

When they’re not empty, then they have a first character and the
rest of the string.

std::string strToUpper(std::string str){

if(str.empty()){

...

}

else{ //not empty

... str[0] ... str.substr(1) ...

}

}

The rest is recursive, so let’s have the procedure be recursive
where the data is recursive.

std::string strToUpper(std::string str){

if(str.empty()){

...

}

else{ //not empty

... str[0] ... strToUpper(str.substr(1)) ...

}

}

The uppercase form of the empty string is still the empty string.

std::string strToUpper(std::string str){

if(str.empty()){

return std::string("");

}

else{ //not empty

... str[0] ... strToUpper(str.substr(1)) ...

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 6

}

}

The expression strToUpper(str.substr(1) gives us all but the first of
our string in uppercase form, but str[0] is still possibly lowercase. We
can use toupper to fix that.

std::string strToUpper(std::string str){

if(str.empty()){

return std::string("");

}

else{ //not empty

... toupper(str[0]) ... strToUpper(str.substr(1)) ...

}

}

Now we just need to glue the two pieces back together by append-
ing. In order to append, we need to convert our new first from a char
to a std::string.

std::string strToUpper(std::string str){

if(str.empty()){

return std::string("");

}

else{ //not empty

return std::string(1,toupper(str[0])) +

strToUpper(str.substr(1));

}

}

That’s it. Now go back and notice that most of what we did was
simply convert the structure of the data to a procedural structure.
When that was done, we filled in the blanks with the problem spe-
cific logic. Now, what if you wanted to go with the last and but-last
decomposition. To keep the empty string we’ll have to be a little
creative and use two base cases.

std::string strToUpper(std::string str){

if(str.empty()){

return std::string("");

}

else if(str.length() == 1){

return std::string(1,toupper(s[0]);

}

else{ //not empty and not size 1

return strToUpper(0,str.length()-1) +

std::string(1,toupper(str[str.length()-1]));

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 7

}

}

The beauty of this strategy is that most of the work is done by
simply identifying the recursive structure of the data. Once you
know what that looks like, then you simply direct your procedure
to make a recursive call where the data is itself recursive. From a
process perspective, you can imagine you’re delegating all but a
small fraction of the work to another process, the recursion, and then
finishing off that last little bit that’s left, toupper the first and append.
To see how this plays out, you can trace the computation out using
substitution9. 9 this trace is not strict. Steps are com-

bined and simplified to highlight the
recursive processstrToUpper(std::string("dog"))

std::string(1,toupper(’d’)) + strToUpper(std::string("og")

std::string(1,toupper(’d’)) + std::string(1,toupper(’o’)) + strToUpper(std::string("g")

std::string(1,toupper(’d’)) + std::string(1,toupper(’o’)) + ...

std::string(1,toupper(’g’)) + strToUpper(std::string(""))

std::string(1,toupper(’d’)) + std::string(1,toupper(’o’)) + ...

std::string(1,toupper(’g’)) + std::string("")

std::string(1,toupper(’d’)) + std::string(1,toupper(’o’)) + std::string("G")

std::string(1,toupper(’d’)) + std::string("OG")

std::string("DOG")

Functional, Iterative strToUpper

Our recursive solution used the recursive structure of the data to
guide the recursive structure of the procedure. There isn’t really such
a thing as iterative structure. Iteration is strictly a process description
and isn’t something we attribute strictly to data. Iteration does, how-
ever, have a general structure that we can fit out problem into: the
incremental accumulation of state.

To solve our problem iteratively we imagine progressing through
each character in our string and as we go we repeat some computa-
tion that updates our accumulated state such that when we’ve visited
all characters the accumulated state is the solution we seek. Just
like with recursion, our repeated computation focuses on just one
character at a time. Conventionally, we traverse the data in first to

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 8

last order. So, let’s say we’re doing strToUpper on the string “hello”.
Imagine we’ve visited ’h’ and ’e’ and are about to visit ’l’. Then we
should have accumulated "HE" and the next step is use toupper to
compute ’L’ and then add that to the accumulated string “HE” to get
“HEL”. What we’re doing is establishing the repeated computation
by defining the next accumulated state value in terms of the current
value. If st is the state at time t, then we want to find some sequence
of operations that computes st+1 given st. In C++ programs, st and
st+1 are the same object and we simply mutate that object. In order
for this to work, we must also identify s0, the initial value for our
accumulated state. This is analogous to the base case for recursion.

There are generally two ways to think about s0: in terms of the
first update and as the solution to the empty sequence. Just because
we’re not writing a recursive procedure doesn’t mean we should ig-
nore the recursive structure of our string. Empty strings are still pos-
sible. In the context of iteration, an empty string means no iterative
updates. It has no first character and therefore no s1. This means that
s0 is the solution when an empty string is encountered. This perspective is
extremely helpful if you have yet to identify the accumulative update
logic. We already have some sense of how to accumulate state: take
the current character, make it uppercase, and add it to the end of the
accumulated string. Let’s return to the string “hello”. After one up-
date we should have an s1 as “H”. The question is then, what string
do we add ’H’ to the end of to get “H”. The answer is, of course, the
empty string. It’s important to note that no matter how you arrive at
the value for s0, the result should be the same just like we see with
strToUpper.

Once we’ve established the accumulative update logic and the
initial value for the accumulator, all that’s left is to encorporate the
traversal logic. If we repeat the update operation on each character
starting with the first and proceeding one at a time until the last,
then we should end up with the correct accumulated state. This
also means that update s1 accumulates the character at index 0, s2

accumulates character 1, etc. In general, step t of the iterative process
works with character t − 110. 10 for non-empty strings of course

Before we express all of this in C++, let’s lay out the steps of itera-
tive problem solving:

1. Identify the data that needs to be accumulated and the operations
that update the current accumulated state11 to the next accumu- 11 st

lated state12 12 st

2. Identify the initial value for the accumulator variable. This is the
solution when dealing with an empty sequence of data and the
value needed to correctly perform the first accumulator update.

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 9

3. Identify the traversal pattern that fits best with your accumulative
update.

You don’t have to work these parts in this order, but you do need to
give some thought to each part.

Let’s begin our C++ implementation of our iterative solution with
a stub.

std::string strToUpper(std::string str){

return std::string("");

}

The first thing we’ll do is work out the accumulative update logic.
Setting up the initial accumulator variable is easy enough. While
we’re at it we can modify the stub to return the accumulator, which is
what we want to do anyway. I like to use the name acc13 when I can’t 13 short for accumulator

think of anything better.

std::string strToUpper(std::string str){

std::string acc{""};

return acc;

}

Now, just to help figure things out, let’s explicitly write out a few
updates. We’ll get rid of these later, but it helps figure out the code.
The std::string method push_back pretty much does exactly what
we’re thinking– add a character to the end of a string.

std::string strToUpper(std::string str){

std::string acc{""};

//first update..

acc.push_back(toupper(str[0]));

//second update

acc.push_back(toupper(str[1]));

//third update

acc.push_back(toupper(str[2]));

return acc;

}

At this point we a pattern. For update i we do

acc.push_back(toupper(str[i-1]));

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 10

The reason we’re subtracting one in str[i − 1] is due to the fact that
we index string characters starting at zero but we count our updates
starting at one. It’s usually better to adjust our thinking to the in-
dexes. From this perspective we’re updating the accumulator with
respect to the ith character by doing

acc.push_back(toupper(str[i]));

Making this adjustment sets aside the focus on “updates” in favor of
a focus on the data itself, the characters in the string.

Let’s setup a bit more logic. We have a generalized update state-
ment that uses a new variable i that needs to somehow work its way
incrementally through the interval [0, str.length()).

std::string strToUpper(std::string str){

std::string acc{""};

int i{0};

// Repeat for all i = 0 to str.length()-1

acc.push_back(toupper(str[i]));

return acc;

}

Loop statements provide a general means of repeating a se-
quence of statements. The most basic C++ look is the while loop. It
looks like this:

while(<continuation-condition>){

<Loop-body>

}

The loop body is a sequence of statements that is repeated for as long
as the continuation condition is true14. Let’s fill in what we know: 14 this means the continuation condition

is a boolean expression
std::string strToUpper(std::string str){

std::string acc{""};

int i{0};

while(...){

acc.push_back(toupper(str[i]));

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 11

}

return acc;

}

Now look closely. If we leave i as is, then we’ll never work with
any character but the first. This means that part of our loop body
should also update the value of i. What we want to do is update
the accumulator for character i, then increase i by one. All the the
following statements increase i by 1.

i = i+1;

i += 1;

i++;

++i;

The difference between the last two options is subtle but only im-
portant when you use i ++ or ++ i as expressions. As statements,
they’re equivalent. Let’s update our code.

std::string strToUpper(std::string str){

std::string acc{""};

int i{0};

while(...){

// accumulate the next uppercase letter

acc.push_back(toupper(str[i]));

// increase i by 1

++i;

}

return acc;

}

All that’s left is the continuation condition. Recall our goal is to
repeat this code such that i moves incrementally through the interval
[0, str.length()− 1). We start i at 0 and we increase it by 1 each time
the loop executes. So, we want to keep repeating as long as i is less
then str.length().

std::string strToUpper(std::string str){

std::string acc{""};

int i{0};

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 12

while(i < str.length()){

// accumulate the next uppercase letter

acc.push_back(toupper(str[i]));

// increase i by 1

++i;

}

return acc;

}

This will cause a compiler warning because the string length is
an unsigned integer and i is a signed integer. We can fix this easily
enough by changing the type of i.

std::string strToUpper(std::string str){

std::string acc{""};

unsigned int i{0};

while(i < str.length()){

// accumulate the next uppercase letter

acc.push_back(toupper(str[i]));

// increase i by 1

++i;

}

return acc;

}

There’s another type of loop called the for loop lets us move all
of the logic surrounding the variable i to one place. The benefit of
this style is that it seperates the accumulator logic from the logic that
drives the loop.

std::string strToUpper(std::string str){

std::string acc{""};

for(unsigned int i{0}; i < str.length(); ++i){

// accumulate the next uppercase letter

acc.push_back(toupper(str[i]));

}

return acc;

}

You should be able to guess the overall structure of the for loop,

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 13

but just in case:

for(<init> ; <continuation> ; <update>){

<body>

}

The for loop first runs the < init > statement. Then, as long as
< continuation > is true, it will execute the < body > and then the
< update >. One important difference between the for loop and the
while loop is that any variable declared in the the < init > statement
of a for loop is only usable within the loop statement. Occasionally
we’ll need to use a loop variable, like i, outside of the loop statement.
For this you either use a while loop or a for loop with the initialize
separated like this one:

unsigned int{0};

for(; i < str.length() ; ++i){

}

There’s a problem with our iterative implementations. Starting
with the empty string and accumulating by pushing on new charac-
ters clearly illustrates the accumulative logic, but its inefficient. Each
call to push_back can cause the system to resize the string object to
account for the new character. This is unavoidable when we have no
idea how big the final string will be. If however, you know how big
the final string should be, then it’s better to start with a string of that
length and modify it. For strToUpper we know exactly how long the
resultant string should be and can therefore apply this optimization.
Let’s look at a few ways to enact this with std::strings.

Our first option is probably the way to go. Unfortunately, the logic
is not quite so easy to follow. Here we recognize that the string str is
passed by value and is therefore a copy of the string we’re converting
to uppercase letters. This means it is exactly the length we want and
we can simply overwrite the existing characters with their uppercase
counterparts.

std::string strToUpper(std::string str){

for(unsigned int i{0}; i < str.length(); ++i){

// set str[i] to the uppercase version of its current contents

str[i] = toupper(str[i]);

}

return str;

}

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 14

The beauty of this implementation is we avoid extra string variables.
We could have avoided the implicit copy15 by making an explicit 15 and sometimes must

copy. Once we do this, we might as well ignore the input and rework
the code in terms of the copy.

std::string strToUpper(std::string str){

std::string acc{str};

for(unsigned int i{0}; i < acc.length(); ++i){

acc[i] = toupper(acc[i]);

}

return acc;

}

Once we start programming this way, it’s easy to imagine differ-
ent traversal patterns. Here we work from last to first. Notice we no
longer need to use unsigned integers. In fact, you’ll run into prob-
lems if you do16. It’s also important to note the change in update 16 if there are no negative values, then i

>= 0 is always true!code17.
17 –i,i–,i -= 1, i= i -1 all have the same
effect– subtract 1 from istd::string strToUpper(std::string str){

std::string acc{str};

for(int i{str.length()-1}; i >= 0; --i){

acc[i] = toupper(acc[i]);

}

return acc;

}

If you’re dead set on keeping the push_back logic around, then it’s
worth noting that we can change the capacity of a string. In doing so
we make more room for future data. If we then use push_back, the
computer will use that extra space rather than create more backup
space.18. 18 compare std::string reserve with

resize
std::string strToUpper(std::string str){

std::string acc{""};

// add enough space for new characters

acc.reserve(str.length());

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 15

for(unsigned int i{0}; i < str.length(); ++i){

acc.push_back(toupper(str[i]));

}

return acc;

}

As always, there are lots of ways to capture the details. All of the
implementations given about work off the same principle of iteration:
incrementally accumulate the solution as you traverse the data.

Mutator-Based, Iterative setStrToUpper

Let’s now turn our attention to the mutator version of this problem.

/**

* setStrToUpper modifies a string so that all the contained letters

* are now uppercase

* @param strRef reference to the string

* @return none

* @pre strRef is composed of alphabetic characters only

* @post string variable referenced by strRef has been modified

*/

void setStrToUpper(std::string &strRef);

The iterative version of this is very simple. You’ve actually already
seen it except for the very important change from pass-by-value to
pass-by-reference.

void setStrToUpper(std::string& str){

for(unsigned int i{0}; i < str.length(); ++i){

// set str[i] to the uppercase version of its current contents

str[i] = toupper(str[i]);

}

return;

}

All the heavy lifting is done by the computer when it passes the
argument to setStrToUpper by reference. Once we have direct access
to the string we can use loop-based iteration to modify the entire
object right then and there.

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 16

Mutator-Based, Recursive setStrtoUpper

The recursive version of the mutator is tricky. The problem is that
our selector for the rest of the string is functional. When we select
str.substr(1), we get a copy of the rest. So, making the recursive call
on this copy doesn’t modify the correct object. The immediate so-
lution is to then replace the existing rest of the string with the new
uppercase copy.

void setStrToUpper(std::string& str){

if(str.empty()){

return;

}

// upper the first

str[0] = toupper[str[0]];

// upper the rest

std::string rst{str.substr(1)}; //get the rest

setStrToUpper(rst); // uppercase the rest

str.replace(1,str.length()-1,rst); //str’s rest to rst

return;

}

This is not an efficient implementation19. The heart of the matter is 19 the problem is replace causes repet-
itive writes of characters. do you see
why?

that there’s no direct way to pass part of a string by reference. If we
could get the rest by reference, then we could pass as the argument
to the recursive call and not worry about the replace. So, if we are
really set on doing a recursive mutator for this problem, then we
have create a helper procedure or overload20 the current definition. 20 new signature, same name

Let’s go the second route.
Pay very close attention to the pre and post conditions. Notice that

/*
Let all the letters from i to the end of str to their upper case counterparts

@param str the string object getting modified

@param i the lowest location to be modified

@return none

@pre str is all alphabetic letters. 0 <= i <= str.length()

@post the letters in str at location i to the end have been converted to uppercase

*/

void setStrToUpper(std::string& str, unsigned int i);

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 17

Now a stub and some tests.

void setStrToUpper(std::string& str, unsigned int i){

return;

}

TEST(setStrToUpper,recur2){

std::string s{""};

setStrToUpper(s,0);

EXPECT_EQ(std::string(""),s);

s = "hello";

setStrToUpper(s,0);

EXPECT_EQ(std::string("HELLO"),s);

s = "hello";

setStrToUpper(s,1);

EXPECT_EQ(std::string("hELLO"),s);

s = "hello";

setStrToUpper(s,3);

EXPECT_EQ(std::string("helLO"),s);

}

Now, notice how this solves our problem by letting us modify i
instead of str.

void setStrToUpper(std::string& str, unsigned int i){

if(i == str.length()){ // empty!

return;

}

str[i] = toupper(str[i]); // set the "first"

setStrToUpper(str,i+1); // set the "rest"

return;

}

We can now implement the version with the original signature by
just calling to the two argument version with an initial value of i as
zero..

void setStrToUpper(std::string& str){

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 18

setStrToUpper(str,0);

return;

}

The final version of setStrToUpper is strikingly similar to our iter-
ative version: it works on a single string object rather than produce
any copies and its logic is oriented around counting through indexes.

C++ Strings, Recursion, and Efficiency

The beauty of structural recursion is that you can find recursive
structure in just about any data type if you need or want it. The
downside is that this structure is often abstract and not indicative
of the actual implementation of the data type. This is the case for
std::string in C++. We can absolutely work with them using good
old fashioned structurally recursive thinking and arrive at logically
simple, correct implementations of procedures. The problem is they
will be inefficient when compared to iterative solutions. This is not the
fault of recursion. It is a matter of a mismatch between what we need
for efficient recursion and what we need for efficient iteration.We’ll
revisit this issue after we equip ourselves with some basic tools for
analyzing and understanding efficiency. For now, we’ll focus on basic
intuition.

When working recursively we need efficient access to the first/last
of a string as well as the rest/but-last because every step of the pro-
cess21 requires we select these two components of the structure. The 21 plus or minus the base case

first/last is accessible through operator[] or the at method. Both of
these work very efficiently in what we call constant time. This means
only some fixed number of basic operations are needed to select this
element of the string. Selecting the rest/but-last using substr unfor-
tunately requires an amount of work that is dependent on the length
of the substring you’re selecting. Working iteratively only requires
that we select a single element at each step by using operator[] or at.
Without even getting into problem specific details, it seems clear that
substring selection is a bottleneck.

Given this discrepancy in efficiency, what are we to do. For starters,
we could ignore it unless it’s actually a problem in the real world. If
you’re strings are short22 22 this could mean lengths into the

hundreds

Recap

Let’s wrap-up this discussion by looking at the preferred imple-
mentations. Let’s first look at the recursive vs. iterative functional
strToUpper.

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 19

std::string strToUpper(std::string str){

if(str.empty()){

return std::string("");

}

else{ //not empty

return std::string(1,toupper(str[0])) +

strToUpper(str.substr(1));

}

}

std::string strToUpper(std::string str){

for(unsigned int i{0}; i < str.length(); ++i){

// set str[i] to the uppercase version of its current contents

str[i] = toupper(str[i]);

}

return str;

}

It turns out that the iterative version is more efficient than the recur-
sive version, but comparing these two implementations is a bit unfair.
The iterative version is fairly optimized: it leverages the implicit copy
done by pass-by-value functions to accumulate the answer in the
same memory space as the function input. The recursive version ac-
tually suffers a performance hit by using substr which creates a copy
of the rest rather than select the rest directly. This is more or less an
unavoidable cost of the C++ std::string class. So, the difference is not
really a function of recursion vs iteration in general but recursion
vs. iteration for std::strings. Given a way to select the rest without
making a copy, these two implementations would be equally efficient.

Now let’s look at the mutator setStrToUpper.

void setStrToUpper(std::string& str){

for(unsigned int i{0}; i < str.length(); ++i){

// set str[i] to the uppercase version of its current contents

str[i] = toupper(str[i]);

}

return;

}

void setStrToUpper(std::string& str){

comp 161 - lecture notes - 11 - iterative and recursive procedures for strings 20

setStrToUpper(str,0);

return;

}

void setStrToUpper(std::string& str, unsigned int i){

if(i == str.length()){ // empty!

return;

}

str[i] = toupper(str[i]); // set the "first"

setStrToUpper(str,i+1); // set the "rest"

return;

}

It turns out that these two implementations are, in terms of efficiency,
more or less equivalent. This isn’t too surprising given that the recur-
sive version more or less mirrors the logic of the iterative version and
avoids the use of substr.

What should we take away from this? You should probably favor
iterative logic for std::string procedures because it plays well with
how the string class is implemented. With that being said, our recur-
sive setStrToUpper implementation shows us that we can effectively
implement iterative logic using recursive procedures. So in the end,
the ability work recursively and iteratively are tools we must have
in our problem solving tool box. The other important thing we’ve
started looking at is efficiency. We’ll soon equip ourselves with a way
to study and understand program efficiency. Until then, always re-
member that job number one is to make the code function correctly
then optimize it. As you gain experience you’ll learn different op-
timization techniques and know to design your code with those in
mind. Until then, don’t start to worry about slow code until you have
concrete evidence that your code is slow.

	The problem: a toupper for std::string objects
	Strings as Recursive Structures
	Functional, Recursive strToUpper
	Functional, Iterative strToUpper
	Mutator-Based, Iterative setStrToUpper
	Mutator-Based, Recursive setStrtoUpper
	C++ Strings, Recursion, and Efficiency
	Recap

