
COMP 161 - Lecture Notes - 07
main, I/O, and State Mutation Effects
April 11, 2016

In these notes we write our first main procedures and in doing so look
at some common CLI interface idioms and our first effect-based code.

Interactive Testing

So far, you’ve only interacted with your functions by writing and
running tests. The user interface1 for this was provided through 1 UI

a main procedure written by Google and provided in the library
libgtest_main which was linked in at compile time. It’s time to start
writing your own main implementations. This will require that we
dive into some basic I/O and state mutation. From here on out, when
we talk about developing a program, we’re talking about writing a
main procedure as any necessary helper procedures. The helpers are
expected to be in a library and tested independent of their usage in
main using the gTest libraries.

The first programs we’ll develop will be done enable interactive
testing of one or more procedures2 So far, our testing process with 2 Alternatively, you can think of them is

very, very simple interfaces with one or
more functions.

gTest is restrictive in that once you choose your values you have
to re-write and re-compile your code in order to try new values.
The real goal of these tests is to cover all the cases of the problem
and program logic. Once we’re sure these tests pass, it’s likely we’d
like to try a few more test cases on the fly. This means we need a
program that allows us to feed values to our functions while it’s
running.

We’ll explore two common idioms for interactive testings: a REPL
and a CLI program. The former prompts the user for input repeat-
edly. All the I/O is managed by the program after it is launched at
the CLI. The process is looped so that any number of tests can be
run. The later takes the function inputs from the CLI, processes them,
and computes the result. It allows a single test but is meant to in-
tegrate with the CLI. Thus, if you wanted to do repeated tests you
could automate that process using Bash and other CLI tools.

The Function

Let’s start by knocking out problem 1 from section 4 of the HTDP1e
online problem set3. I’ve renamed the function to conform with our 3 http://htdp.org/2003-09-26/

Problems/4.htmlC++ standards rather than BSL standards. Once we’ve designed
and tested this function using gTest, then we’ll write our interactive
programs to go with it.

http://htdp.org/2003-09-26/Problems/4.html
http://htdp.org/2003-09-26/Problems/4.html

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 2

Develop the function isWithin, which consumes three numbers
representing the x and y coordinates of a point and the radius r
of a circle centered around the origin It returns true if the point is
within or on the circle. It returns false otherwise. The distance of
the point to the origin is the square root of x2 + y2.

Here’s the end product of our development process4 4 Recreate this process for practice

// In the header

namespace TwoD{

/**

* Determine if the point (x,y) is on or within a

* circle with center (0,0) and radius r

* @param x the x coordinate of the point

* @param y the y coordinate of the point

* @param r the radius of the circle

* @return true if (x,y) is in or within the circle

* @pre radius r is positive or 0

*/

bool isWithin(double x, double y, double r);

}

// In the tests

TEST(isWithin,all){

// Positive Tests

EXPECT_TRUE(TwoD::isWithin(0,0,0));

EXPECT_TRUE(TwoD::isWithin(0,0,0.5));

EXPECT_TRUE(TwoD::isWithin(0,0,2.5));

EXPECT_TRUE(TwoD::isWithin(1.0,0.5,2.5));

EXPECT_TRUE(TwoD::isWithin(2.5,0.0,2.5));

EXPECT_TRUE(TwoD::isWithin(0.0,2.5,2.5));

// Negative Tests

EXPECT_FALSE(TwoD::isWithin(1.0,0,0));

EXPECT_FALSE(TwoD::isWithin(0,1.0,0.5));

EXPECT_FALSE(TwoD::isWithin(2.5,2.5,2.5));

EXPECT_FALSE(TwoD::isWithin(0,0.501,0.5));

EXPECT_FALSE(TwoD::isWithin(2.5,0.1,2.5));

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 3

EXPECT_FALSE(TwoD::isWithin(0.0,3.0,2.5));

}

// In the Library Implementation

#include <cmath>

bool TwoD::isWithin(double x, double y, double r){

return r >= sqrt(x*x + y*y);

}

With this kind of function we can expect to run into some double
arithmetic rounding problems. In particular, when we’re checking for
the point one the edge of the circle, the equality case, things could
easily get off and produce erroneous results. So, it might be nice to
interactively test this function to see when that kind of problem crops
up. It might also be nice to try some new values without the need to
write new tests.

Goal: Two Programs for Interactive Testing

Both our REPL and CLI testing program for isWithin will require
the use of I/O and state. The results of the test need to be written
to the screen, there’s your Output. The REPL will read user input
from the user directly and the CLI versions will use an input library
to facilitate the processing of user input given at the CLI terminal,
so there’s your Input. User input cannot be acted on directly. It
must first be stored in memory, which for the programmer is a state

variable. The process of declaring/allocating and initializing a
variable is a basic case of mutation effect. There we have it, all three
major effects.

This go around we’ll start with the finished product and then
break the code down bit by bit. The first program we’ll look at is the
REPL then the CLI program.

Program 1: Interactive REPL

I’ve included the #include statements to highlight the standard C++
I/O library, iostream5. 5 http://www.cplusplus.com/

reference/iostream/

#include <iostream> //std::cout, std::cin, std::boolalpha

http://www.cplusplus.com/reference/iostream/
http://www.cplusplus.com/reference/iostream/

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 4

#include "ln7.h"

int main(int argc, char* argv[]){

/**

* an explicit infinite loop

* This is a terrible idea more often than not, but

* works for this application.

*/

while(true){

/** declare variables **/

double x{0.0}; //point x coordinate

double y{0.0}; //point y coordinate

double r{0.0}; //circle radius

/** READ **/

// get point coordinates

std::cout << "Enter point coordinates: ";

std::cin >> x >> y;

// get radius

std::cout << "Enter circle radius: ";

std::cin >> r;

/** EVAL and PRINT **/

// print results and eval inline with printing

std::cout << "isWithin(" << x <<" , " << y << " , " << r << ") -> " <<

std::boolalpha << TwoD::isWithin(x,y,r) << ’\n’;

} // end while(true)

return 0;

} // end main

The body of main6 consists of an infinite while loop7. Within the 6 the part between the curly braces
7 Users terminate the loop with Ctrl-C
on the CLI

loop we see state variable declaration and initialization, the read
phase carried out with through output prompts followed by the
actual input, and finally a combined evaluate and print. Now that we
see the big picture, let’s break it down piece by piece.

Infinite Loop

The body of main should initialy be viewed as a single statement, an
infinite while loop. This statement has the following structure.

while(true){

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 5

// Loop body

}

A while loop will repeat everything in it’s curly brace block8 for as 8 called the loop body

long as the boolean expression in the parenthesis evaluates to true9. 9 If you can’t wait to learn more: http:
//www.cplusplus.com/doc/tutorial/

control/
In this case, we’ve explicitly put true in parenthesis so this loop will
repeat forever. We’ll explore loops quite a bit soon, but it’s really
hard to separate loops constructs like this one from effects. A great
many loops drive variable mutation over time or I/O like this one.
In short, a loop is rarely, if ever, a functional, black-box process; they
almost always have some kind of effect on the overall system with
respect to your program.

There aren’t a lot of good reasons to write infinite loops. This
one makes sense from the perspective that we’re writing a program
only meant to be run by us and with a very special purpose. It’s
a quick and dirty solution to the problem of creating a REPL and
we’re not imagining this program will have much of a life span or
user base. As soon as your program is going to be around awhile or
used by people not you, you should find a better way than an infinite
loop10Be warned, I’ll rarely expect an explicitly infinite loop as a 10 Like an explicit quit key

solution to a problem on your homework.

Variable Declaration and Initialization

The first step within the loop is to declare and initialize state vari-
ables11 in which we can store the user input. 11 we’ll usuall drop the state part. “state

variable” == “variable”

double x{0.0};

double y{0.0};

double r{0.0};

Here we see three variable of type double, x, y, and r, each as-
signed an initial value of 0.0 using brace-initialization. This form
of initialization is new to the c++11 standard12. Prior to the c++11

12 this means we need to add the -
std=c++11 compiler option to the
Makefile rule for building objects

standard you’d see alternative initialization statements such as:

double y; //pure variable declaration. type and name

y = 0.0; // then immediately assign "initial" value

double x = 0.0; //declare and initialize with assignment

double r(0.0); //constructor function style with parenthesis

The first option is really a C style. It’s only an initialization in that
nothing happens between declaration and the assignment. I don’t
prefer this because you’re tempted to not assign an initial value and
you should always assign an initial value. The second line of this pair

http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 6

bears some comment. This is a state mutation or variable assign-
ment statement. It is not a mathematical equation. It is a statement
that reads: “Assign the value 0.0 to the variable with name y” or “As-
sign the value 0.0 to the memory location labeled with the name y”.
We’ll talk in more detail about assignment shortly.

The second option for initialization is nice because it’s one cohe-
sive statement, but because it uses the assignment operator = it can
sometimes confuse people about the usage of variable type annota-
tion. They see the double in this statement and want to then continue
to use double wherever they are referring to, and specifically assign-
ing values to, x. I prefer my initialization statements to look com-
pletely different from my general purpose assignment statements.

The final option is great from the perspective that it looks different
than assignment and therefore reminds us that initialization and
general purpose assignment are different things. The only reason
we’ll use braces instead of parenthesis is that the parenthesis become
more meaningful as we explore more involved kinds of data. Curly
brace initialization was introduced to provide a consistent means of
initializing data for standard C++ types.

We’ll always use the new brace initialization style as it really sets
apart initialization and is fairly uniform across the types of data we’ll
use. You should recognize other initialization styles because you may
need to read or write them someday, but always initialize and always
use brace initialization in this class13. 13 second reminder: this requires the

compiler option -std=c++11

Variable Scope

Now that we undestand how to create variables we need to make
certain we know where we can use those variables, aka the scope of
a declared variable. The scope of a variable in C++ is within the most
recent curly braces and for all lines following the declaration until the
terminating curly brace. In this case, the most recent set of braces are
those of the while loop. This restricts the usage of the variables to the
loop. If we attempted to reference14 the variables after the loop, then 14 use the name, not redeclare!

the compiler would protest.
The school of thought we’re subscribing to here is to declare vari-

ables in the most restrictive scope possible. We only need x, y, and r
within the loop so that is where we declare them. The loop here
gives the impression that the computer will create brand new vari-
ables everytime the loop repeates. This is not actually the case, but
as written that is how it will appear. Everytime the loop repeats, the
variables are reset to 0.0.

Understanding the scope of a variable is vital to maintaining your
sanity in C++ because we’ll soon learn that its possible to alias vari-

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 7

ables such that two more more variables can refer to the same piece
of state through different names. This wasn’t an issue in Racket.
Variables refered to fixed values and when two variables refer to the
same value then the physical reality in Racket was that copies existed
of that value. In C++ we can either have copies or shared references.
Combine this with mutation, and we’ll discover that the extent

15 of 15 lifespan

our data often outlives that of its variable’s scope.

Prompt and Input Sequences

Once we’ve declared and initialized our variables, then we’re ready
to fill them with user inputted data. What we see is a pattern of
prompting the user for input using output statments and then actu-
ally getting their input with an input statement. Let’s look at the first
example.

cout << "Enter point coordinates: ";

cin >> x >> y;

We want to think of these statements in terms of the binary stream-
ing output operator <<16 and the binary streaming input

16 “put to”

operator >>17. Let’s start with the first statement– the output 17 “get from”

statement. To the left of the operator is the output stream std::cout18. 18 or cout as defined in the std names-
paceIt is our direct connection to the CLI’s standard output. The effect of

this statement is to print the string literal “Enter point coordinates: ”.
The input stream std::cin connects us to the CLI’s standard input.

It reads values from the CLI and, in this case, writes them to vari-
ables. Data from cin is, by default, separated by white space. In this
case, we’ll take the first token

19 and read it like a double, because x 19 characters without any whitespace

is a double, and save it to x. The next token is also read as a double
and then saved to y. You can separate the two tokens with spaces,
tabs, or even newlines as those all qualify as whitespace characters.
It’s important to note that the program will ready any data as if it
were a double. If you type the string hello, the program will attempt
to interpret as a double literal and interesting and unexpected things
will happen.

Our procedure continues with one more prompt and input se-
quence:

cout << "Enter circle radius: ";

cin >> r;

Let’s just restate the effect of these statements in plain English:

Put the string literal “Enter circle radius: ” to the standard output via
the stream cout get a value from the standard input stream cin and
write it as a double to the variable r.

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 8

It’s important to get a feel reading these statements as applications
of streaming I/O operators. In doing so you’ll be less attached to
specific streams and more able to adapt this logic to alternate I/O
streams.

There is a great deal of effect-based programming going on un-
der the hood of the streaming I/O objects cin and cout. We’ll expose
some details as needed. For now, it’s enough to know that that they
buffer20 data from their receptive devices and that the I/O operators 20 temporarily store

mutate the contents of those buffers when you use them. They are
your first example of stateful objects. They are not black-boxes.
They have hidden internal state that combines with input to deter-
mine their output and behavior.

More Involved Output

The last statement in out loop is a fairly involved output statement.

std::cout << "isWithin(" << x <<" , " << y << " , " << r << ") -> " <<

std::boolalpha << TwoD::isWithin(x,y,r) << ’\n’;

First note that this is a long statement and I split it across two
lines. The compiler typically treats all white space the same and
generally ignores it. This means we’re free to split a line as long
as we don’t break up something important.21. To understand why 21 Don’t split the string literal or a <<

we have a lot of << operators in this statement remember that the
operator is binary only with one operand being the stream and the
other a single datum. So, in order to output n things, we’ll need n
operators.

Before going further, let’s see an example of the kind of output this
produces:

isWithin(3.4 , 5.6 , 10) -> true

All of the spacing in that output is not the result of breaking things up
with <<. Put another way, additional << operators do not introduce
any kind of white space to the output. If you go back and look at all the
string values, you’ll notice carefully placed spaces. This is how the
actual output comes out nice and readable. Without those spaces it
would all be smashed together.

We could also get the exact same output with two statements
instead of just the one.

std::cout << "isWithin(" << x <<" , " << y << " , " << r << ") -> ";

std::cout << std::boolalpha << TwoD::isWithin(x,y,r) << ’\n’;

This alternative sequence of output statements tells us that new output
statements do not produce new lines in the output.

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 9

Students first starting out with C++ I/O assume too much of their
operators. So, commit this thought to memory now:

If you want spaces and newlines in your output, then you must explic-
itly put it there.

There is one final thing of note in this statement. One of the to-
kens is not actual output, but a token used to modify how data in
the stream following it is displayed. Any boolean values after the
std::boolalpha token will be printed as true or false rather than 1 or 0.
We call these tokens I/O manipulators. They are used to set the
state of the I/O stream object and modify the way in which data is
displayed. They allow us to format how data is displayed.

Before moving on, let’s restate this dozy of an output statement in
plain English:

The the stream cout put the following data, in this order: the string
literal “isWithin(” the value stored in the variable x, the string “ , ”, the
value stored in y, the string “ , ”, the value stored in r, and the string
“) -> ”. Next, put the boolalpha manipulator to the cout stream in
order to format boolean output to alphabetic. Finally, put the result of
isWithin(x,y,r) to cout and the newline character.

Recap

This relatively straight forward example illustrates several key issues
surround basic C++ stream I/O and variables. Be sure you under-
stand what’s happening with this concrete example. In the following
sections we’ll explore the big picture and establish some general
guidelines for variable and I/O effects.

State Variables

We previously encountered variables when dealing with the linux
CLI and noted that three logical operations tend to govern our inter-
action with variables.

• Initialization

Assigning a starting, initial value to the variable.

• Mutation

Assigning a new value to a previously initialized variable

• Access

Viewing or getting the current value in the variable.

Let’s look at basic statements for each of these operations.

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 10

Declaration and Initialization

In C++, variables are typed. This means they can only hold values of
that type. When we first add, or declare, a variable to our program we
must state its type and name and initialize its value. Variable declara-
tions simply provide the type and the name with no initial value– you
should never just declare a variable. We’ll be using the C++11 brace ini-
tialization syntax and so our variable declarations and initializations
have the following template:

TYPE NAME{INITIAL-VALUE};

You’ve seen a few examples already, but here’s a few more:

char achar{’a’};

bool isOK{false};

int size{15};

double amplitude{0.707};

Accessing Variables

When we talk about accessing a variable we mean retrieving the
value currently stored in that variable. To do this we simply refer to
the variable by name. You saw this in the output statements from our
testing program and when we called the function. Here’s a few more
examples of accessing variables. I’ve reused the variables from above
and written examples of accessing them in the context of gTest unit
tests so that you get a sense for the substitution of variable name for
value.

EXPECT_EQ(’a’,achar);

EXPECT_EQ(’A’,toupper(achar));

EXPECT_FALSE(isOK);

EXPECT_TRUE(!isOK);

EXPECT_TRUE(isOK || !isOK);

EXPECT_EQ(15,size);

EXPECT_EQ(-3,size-18);

EXPECT_EQ(33,2*size+3);

EXPECT_DOUBLE_EQ(0.707,amplitude);

EXPECT_DOUBLE_EQ(1.414,2*amplitude);

Variable Mutation

To mutate a variable means to assign it a new value. This is carried
out via the assignment operator =. This operator is binary. Its left-

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 11

hand operand must be something with an associated location22, i.e. 22
l-value

the name of a variable. Its right-hand operand must be an expression,
i.e. something with an associated value23. We can again use tests to 23

r-value

demonstrate the result of mutation. The key difference here is that
the mutation statement should really be bracketed by a before and
after test as what we’re really testing isn’t a value but a change in
state.

char achar{’a’};

// BEFORE and AFTER

EXPECT_EQ(’a’,achar);

achar = ’x’; //mutation

EXPECT_NE(’a’,achar); // not ’a’

EXPECT_EQ(’x’,achar); // is ’x’

It is possible to do assignment as an expression. You shouldn’t
do it at all for this class, but it is a style of programming you might
run across. Assume we’re picking up right where we left off and the
current value stored by achar is the character x.

EXPECT_EQ(’x’,achar); //before

EXPECT_EQ(’b’,achar = ’b’); //assignment expression!

EXPECT_EQ(’b’,achar); // after mutation

As you can see, the value of assignemnt is the assigned value.
An extremely common form of assignemnt is an assignment done

relative to the existing value in the variable. This is done when you
want to update a variable rather than replace it altogether. Several
shortcut operators exist for just this purpose.

Operator purpose
+ = a+ = b is the same as a = a + b
∗ = like + = but with ∗
− = like + = but with −
/ = like + = but with /

Notice these are shortcut expressions for the case where the vari-
ble is used on both the left and right hand side of the assignment.
We’ll always use them as statements, but they can also be used as
expressions. A few tests with + = should illustrate the point.

int x{4};

EXPECT_EQ(4,x);

x += 6;

EXPECT_EQ(10,x);

// update assignemnt also has value

EXPECT_EQ(6,x-=4);

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 12

There is one more set of shortcuts that update variables based
on their existing value and you’ll use them a lot. The ++ operator
increases a variable by 1 where −− will decrement by 1. These op-
erators can be used before and after the variable. As statements the
result is equivalent, but as expressions they have different values. The
following tests illustrate the difference with ++.

x = 0;

EXPECT_EQ(0,x);

EXPECT_EQ(1,++x);

EXPECT_EQ(1,x);

EXPECT_EQ(1,x++);

EXPECT_EQ(2,x);

Procedure Parameters are Variables

Now that we’re getting a handle on variables we need to revisit the
nature of procedure parameters. In a purely functional world it’s safe
to think of the parameters as names assigned to the argument values.
When we call TwoD::isWithin(1.0,2.0,3.0), then 1.0 is named x, 2.0 is
y, and 3.0 is r. We can then imagine the execution of the procedure
proceeding with all names substituted for their associated values.
This was the rule in BSL-Racket and there were no exceptions.

In C++ the functional, substitution semantics
24 is only part of 24 how something is interpreted, what it

meansthe picture and only applies when you stick to a strict functional
style that does not modify parameters within the body of the func-
tion. The technical reality is that all procedure parameters are variables
scoped to the body of the procedure and initialized with their respective ar-
gument values. When calling TwoD::isWithin(1.0,2.0,3.0) we are not
simply matching argument name to value, we are initializing the local
state of the procedure. This distinction is important because it opens
up some new programming idioms.

Streaming I/O

The C++ streaming I/O system provides a fairly uniform way of
approaching I/O tasks. Streams provide buffered I/O access to a
device and the operators << and >> are used to put and get, re-
spectively, data from those streams. Our testing REPL exposed us
to the standard output stream cout and the standard input stream
cin. The iostream library also provides the output stream cerr, which
is the standard error output. The fstream library allows us to create
I/O streams for files. The stringstream library allows us to treat string
objects like streaming I/O devices and in doing so lets us leverage
the streaming I/O capabilities for interpreting characters as typed

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 13

data, and vice versa, when processing string data. Our first use for
this will be working with arguments passed to our programs form
the command line.

The following examples will all use cout and cin as our represen-
tative stream objects. Later we’ll see that we can replace cout with
another output stream object and cin with an input stream object and
get the same general results, just to different I/O devices.

Streaming Output

As we’ve seen already, streaming output is done via the “put to” op-
erator <<. Our example program really highlights all the key issues
for working with streaming output, so it bears close examination.
The main things to remember are that:

• the only white space that gets written is the white space you ex-
plicitly add to the stream

• you chain together multiple uses of << with a single stream as
long as its one datum per operator

To illustrate these points I give you one example.

cout << 7 << 8.36 << " isn’t ";

cout << 7 << " " << 8.36 << "\n" << "hi\n";

The result of these two statements is the output:

78.36 isn’t 7 8.36

hi

The cursor ends immediately below the h in hi.

Streaming Input

Once again, our example problem pretty much covers all the bases.
Go back and read it carefully. Some key points to remember are:

• You cannot do streaming input without variables because you
must have a place to store the value that >> gets from the stream

• Data from the stream is broken up by whitespace. This includes
the enter key, so hitting enter doesn’t terminate input, reading
tokens does.

• The way in which data is read from the stream is determined by
the type of the variable in which the data is being stored and not
by how it appears in the stream.

• You can chain input together to read multiple values with a single
statement.

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 14

Program 2: CLI Input

The CLI is built on top of strings. When we want to take input from
the CLI for our C++ programs, then we have to take it as strings.
So, to get our second program working, we need to start looking
at strings. We’ll start with a quick and dirty overview of just some
essentials for managing this program and get into more details in the
next set of lecture notes.

Without further ado, here’s a version of this program that lets you
pass in your test values from the CLI. The tradeoff here is that there
is no loop. We have to re-run this for each new set of data25. 25 or write a looping Bash program to

run this maybe
#include <iostream> // std::cout, std::cerr

#include <sstream> //std::istringstream

#include "ln7.h"

// Variable Declaration

double x{0.0};

double y{0.0};

double r{0.0};

// Quick error check for enough arguments

if(argc != 4){

std::cerr << "Not enough arguments. Usage: " << argv[0] << " x y r\n";

return 1;

}

// Let’s assume we typed numbers as arguments

// and not error check the CLI input

std::istringstream xstream{argv[1]};

xstream >> x;

std::istringstream ystream{argv[2]};

ystream >> y;

std::istringstream rstream{argv[3]};

rstream >> r;

// Eval and Print

std::cout << "isWithin(" << x <<" , " << y << " , " << r << ") -> " <<

std::boolalpha << TwoD::isWithin(x,y,r) << ’\n’;

return 0;

}

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 15

First off, take note that we’re using two libraries: iostream and
sstream. The first is familiar. It provides basic I/O capabilities and ac-
cess to std::cout and std::cin. The second library is for string streams26. 26 http://www.cplusplus.com/

reference/sstream/It provides us with the std::istringstream27 type that lets you treat a
27 input string stream

string as if it were an a streaming input device and read data from
that string in the exact manner that you do from the standard input.
Here we use them in order to convert the CLI input, which always
comes as a string, to double.

At a very high-level this program proceeds as follows:

Declare variables to store the CLI input. Check that a sufficient number
of CLI arguments were given and if not, end the program and signal
and error. Create input string streams from each of the CLI input
strings and read the data from those streams to the variables. Output
the results.

CLI Inputs and main’s arguments

When we run our programs from the CLI, the operating system will
take the command run, package each piece as a string, count the
number of pieces, and hand all of this off to the program as argu-
ments to main.

Let’s look at main’s signature:

int main(int argc, char* argv[])

The first parameter, the integer argc, is the number of arguments or
the argument count. This includes the name of the command as well
as all the other arguments. For example, if our executable is named
runIsWithin and we run the following CLI command,

./runIsWithin 2.3 4.5. 10.6

then the value of argc is 4. The arguments themselves are stored in
the parameter argv.

The parameter argv is an array of C-Strings. We know this because
the type char* is, informally, the C-String type and when you put
a set of square brackets after a variable or parameter name you’re
indicating that its an array. Arrays are important structures and we’ll
look at them more in the future. For now it’s enough to know that
they are collections of homogeneous data. In this case, the array argv
is a collect of C-strings. If we had the parameter int vals[] or double
vals[], then we’d be working with a collection of integers or doubles,
respectively. Arrays are an indexed collection such that each datum
is accessible via its index number. The first element in the collection
is always 0

28 and the index values increase sequentially from there. 28 say it again, “the first element in an
array is always zero”Returning to our example from above, we demonstrate how to

access the array argv and how CLI arguments are stored through

http://www.cplusplus.com/reference/sstream/
http://www.cplusplus.com/reference/sstream/

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 16

some gTest unit tests29. 29 EXPECT_STREQ is used to test two
C-Strings for equality

EXPECT_STREQ("./runIsWithin" , argv[0]);

EXPECT_STREQ("2.3" , argv[1]);

EXPECT_STREQ("4.5" , argv[2]);

EXPECT_STREQ("10.6" , argv[3]);

Restating the first test in plain English, we’d say, “Expect the value
of argv at 0 to be the same as the string “./runIsWithin””. These tests
are not meant to be run, they’re meant as an illustration.

It’s a recipe for disaster to attempt to access an array at a location
where no data exists. We call this an index out of bounds error
and it’s a classic bug in software. Thankfully, the value of argc always
tells us exactly which index values are OK and which are not– it tells
us the size of argv30. For our program we need exactly 4 arguments, 30 arrays of size s have index values

from {0, . . . , (s− 1)}the executable name and the three numbers. It’s easy enough to
check that we have exactly 4 and we should do so.

// Quick error check for enough arguments

if(argc != 4){

cerr << "Not enough arguments. Usage: " << argv[0] << " x y r\n";

return 1;

}

Here we check the value of argc and if it’s not 4, we output a message
to cerr31. Notice we include the executable name in the message and 31 where errors go

attempt to remind the user, i.e. ourselves, how to use the program
properly. Finally, we end main by returning 1. Here we assume that a
non-zero return value signals an error condition of some kind.

Streaming Strings

The central obstacle to our CLI-based program is that we’re given
C-string data and need doubles. The C++ streaming I/O system
has already solved the problem of reading a series of characters and
determining what numerical value they represent, so let’s just re-use
that code by way of using string streams. Specifically, we’ll turn our
C-Strings into input string streams, which we can then use along
with the streaming input operator. Here’s the first example:

istringstream xstream{argv[1]};

xstream >> x;

Our first statement declares the input string stream32 xstream and 32 istringstream

initializes it with the first numerical argument. The second statement
then gets the first value from that stream and reads it, as a double, to
the variable x. We repeat this two more times, once for each remain-
ing argument.

comp 161 - lecture notes - 07

main, i/o, and state mutation effects 17

istringstream ystream{argv[2]};

ystream >> y;

istringstream rstream{argv[3]};

rstream >> r;

Assuming the strings can be read as double literals, then that’s it.
We’ve now read our CLI arguments in as doubles. The final state-
ment in our program is the same as version 1, we just report the
results with an output statement.

This Doesn’t Scale Well

You’ve seen the basics of streaming I/O and started to get some
sense of how to work with variables through basic statements in C++.
The problem with only knowing statements is that it doesn’t scale.
Complex effects typically need to be abstracted away from main, or
whatever procedure initiated them, and turned into a procedure in
their own right. Doing this simplifies program logic by breaking it
down to task-specific procedures and provides us with an opportu-
nity to test our effect-based code.

As it stands, the only way we can tell if our testing programs are
producing the desired effect is to run them. This is mainly due to the
fact that the effect-based statements are in main and not abstracted
away into a helper procedure. The other problem is that the effects
are generally taking place on the standard input and output devices
and there is no way to tell the computer to inspect those devices.

We can easily solve the first problem by laying down some ground
rules for designing and writing procedures whose purpose is to
carry out a desired effect. We can work around the later problem
by designing our procedures in such a way that they leverage the
Object-Oriented design of the C++ streaming I/O system. We’ll be
able to write general purpose I/O procedures and test them relative
to string streams. We can then use them on cin, cout, and even file
file streams without changing the code. Before we can do any of this,
we really need to take a moment to study the world of strings in
C++.

	Interactive Testing
	Goal: Two Programs for Interactive Testing
	Program 1: Interactive REPL
	State Variables
	Streaming I/O
	Program 2: CLI Input
	This Doesn't Scale Well

