
COMP 161 - Lecture Notes - 06 - Functional Proce-
dures
January 27, 2017

In COMP160, “How to Design Programs” was all about designing
functions. Now that we’re programming procedurally, we need to
revisit our design process for statement based, functional procedures
as well as effect oriented procedures. In these notes we recapture the
functional design process with C++ procedural programming. You’ll
see that for functions, many things won’t change beyond the obvious
syntax shift from BSL Racket to C++. The core logic is the same, but
how we express that logic is different.

Design and Development Process

It’s always tempting to jump right in and start writing code. When
we do this we’re programming and planning at the same time. This
often works out just fine1, but as the complexity of the problem 1 The act of programming really helps

understand a problemyou’re addressing with code increases, it’s likely that you’re vision
for what needs to happen will get muddier and muddier. To ad-
dress this we talk very purposefully about a design process. Your
program and procedure designs help you establish a concrete plan
and specification. A procedure’s documentation and declaration
clearly establish what your procedure is meant to accomplish and
how it’s expressed in code. The tests let you state several key cases
of expected behavior. Sometimes you can implement the procedure
without these in place, but if you cannot clearly and correctly state
these things, then you shouldn’t expect to be able to implement the
procedure. If you can’t write the documentation, a formal decla-
ration, and some tests, they you probably don’t have clear enough
picture of what you’re trying to accomplish in code.

When designing and developing C++ procedures, we can stick to
the same design process advocated by HtDP2e. Here’s my updated
take on that process with respect to our new set of programming
tools.

1. (Design)Analyze the problem, decide on the data types2 for the 2 more generally the data model

procedure’s inputs and outputs, and document and declare the
procedure in your library header.

2. (Design)Stub the procedure in your library implementation.

3. (Design)Compile the library to an object to check for syntax
errors and warnings.

4. (Design)In your library’s unit test file, write tests for the new
procedure.

comp 161 - lecture notes - 06 - functional procedures 2

5. (Design)Compile the tests to an object to check for syntax errors
and warnings.

6. (Design)Link the library object and the test object to make a test
executable. Run tests to ensure you’re tests and stubs are all setup
and ready to go.3 3 The test will fail. You’re just checking

to see that they run!
7. (Implementation)Finish the implementation of the procedure.

8. (Implementation)Recompile the library object to check for
syntax errors and warnings.

9. (Testing)Link the library object with tests object and run the
tests. Debug as needed.

What you’ll notice here is that I advocate for a lot of compiling check-
points along the way. This can be tedious, but a Makefile and make
will fix this by simplifying the build process. If we’re especially lazy,
we can have the default behavior of our Makefile build all our code
to executable and just build everything each time we need to compile
any one piece.4. The real goal here is to never stray farm from code that 4 This practice does not scale, but

should ease you along for nowcompiles. If it compiles without error, then you’ve passed the low bar
of correctness: the computer recognizes your program as syntacti-
cally correct C++. If code doesn’t compile, then it does nothing and
is for all intents and purposes useless. As you build up a working
program, you should always be adding new code to code you’re cer-
tain compiles. If you don’t know whether or not the code in front of
you can compile or not, then you should stop what you’re doing and
ensure that it at least passes the compiler.

We want to have tests ready to go before we implement our pro-
cedures so that as soon as you complete an implementation you can
verify that not only does it compile but it passes our basic bench-
mark for behavioral correctness: the tests. This means we need to
ensure that tests are ready to compile and run them as soon as we
finish the implementation. To get to this place we use a stub def-
inition. A stub is an implementation of a procedure that meets
the signature but not the purpose. If your procedure is supposed to
return a number, then you just return some random number. If it re-
turns a boolean return then return true or false. The important thing
to understand now is that there are simple ways to provide skele-
ton definitions that let us not only check the syntactic correctness of
our declarations and tests, but let us ensure that everything will run
when we’re ready for it to run.

comp 161 - lecture notes - 06 - functional procedures 3

Static Typing in C++

BSL Racket didn’t require you to explicitly identify what type of data
your function took as input and returned as output. We of course
would document in our function signatures this because passing the
wrong type of data almost always leads to a run-time error

5. For 5 typically the program crashes

example, a function that is meant t manipulate a string shouldn’t be
passed a number. Languages like BSL Racket are called dynami-
cally typed because the type of data associated with a particular
name6 isn’t determined until run-time7. This type of language is 6 or identifier

7 dynamic→run-timefairly flexible but allows you to write something that looks syntacti-
cally correct but that contains obvious type errors.

The other side of the coin is languages that are statically typed,
like C++. Static typing means that the type of value associated with
an identifier8 is determined at compile time9. This means that you 8 or variable

9 static→compile timemust annotate your program with data types so that the compiler knows
exactly what type of data is allowed for your procedures. The reason for
static typing is a stronger guarantee of correctness for programs that
successful compile. With static types a compiler can catch obviously
bad usage of data. If your code invokes a function that’s meant to
operate on numbers but you’ve passed it a string value, then the
compiler can catch that because you’ve given it an explicit declaration
of expected types for all your functions. All those run-time errors
from BSL Racket because compile-time syntax errors in C++. This is
good! The downside is you spend a lot of time annotating code and
dealing with type errors at the compiler. So static types lead to better
run-time correctness as the cost of the programmer’s time. Dynamic
types let the programmer make bad function calls, but often let you
get code written quicker. It’s all about trade-offs.

The last thing we need to be clear on before we move forward is
what, exactly, do we mean when we say data type.

A type is a set of values and operations on those values.

It’s easy to lose track of the operations and forget that procedures
and operators are all defined for specific data types. The only way
a procedure or operator works on multiple types if it is defined for
each of those types. This will quickly become painfully clear in C++.

Basic types in C++

We’ll begin our journey in to C++ types with four primitive types.
Primitive types are built into the language and require no external
libraries in order to use them. Let’s name them and look at some
literal values10. 10 values expressed directly and read-

able by the compiler as such

comp 161 - lecture notes - 06 - functional procedures 4

• int Whole valued numbers

1 0 5 -34 19473 -878237

• double Decimal values

1.0 0.0 5.0 -0.2345 14.234932 -3.14159

• char letters and symbols

’a’ ’A’ ’c’ ’5’ ’+’ ’\0’ ’\n’ ’\t’

• bool boolean values

0 1 false true

There are many other primitive types available, but these will
almost always get the job. If and when we need a primitive type
other than these four, then it will typically be because we’re dealing
with a subset or variation of one of these types we’ll address that
type then.

Number Types

The two most common number types in C++ are int11 and double12. 11 integers
12 Double-Precision, Floating Point
Numerals

The int type is used for whole valued numbers and the double type
for real-valued number, or numbers with a decimal point. In BSL
Racket numbers were numbers and there wasn’t an obvious distinc-
tion between whole-valued or real-valued numbers. You even had
the ability to express fractions, rational numbers, as such. In C++
we must choose one type of number or the other because they use
different circuits in the CPU.

What these two number types clearly demonstrate is the typed
nature of operators. The integer arithmetic works on integer values
and produces an integer value only where double arithmetic works
with and produces doubles. There are no mixed operations. A common
gotcha that results from this is integer division. In math class 1/2
is 0.5. Notice that the operands are both integers but the result is a
double. So, in C++ 1/2 ends up as 013. If you want a double result at 13 Remainders are always dropped

which effectively rounds down the
result

least one, and ideally both, of the operands must be doubles, 1.0/2.0.
When you mix numerical types, the compiler will automatically
convert them so that they’re type is homogeneous. This can lead to
problems if we’re not careful.

The other big thing we need to be aware of with computational
number types is that they have limited precision. The root of the
problem is that we’re working with a limited number of bits. Imagine

comp 161 - lecture notes - 06 - functional procedures 5

using only three digits for numbers. You could only deal with num-
bers in the hundreds or less. Thus, C++ numerical types have certain
limits14. With doubles we also have to deal with values that are im- 14 http://www.cplusplus.com/

reference/climits/possible to express in base 2 (binary). This is the same thing that we
run into with base 10. You can’t represent 1/3 as a decimal number
without an infinite number of places. In binary, 1/10 or 0.1 is one of
these numbers. You can’t represent it in binary without an infinite
number of bits, which we do not have.

As we carry out operations on these imperfect representations of
numbers, we can run in to rounding errors, overflow15, and under- 15 numbers too big to represent

flow16. As programmers we must always be aware of the fact that 16 numbers too small to represent

our calculating machines are imperfect calculators.

The math carried out by a computer is not always the math we learn in
school. It’s an approximation that often goes astray.

If you weren’t a fan of BSL Racket’s prefix notation17 then you’re 17 operator before operands

in luck, C++ uses the same infix style you learned in math classes.
The basic set of numerical operations are what you’d expect for the
most part.

+ int and double addition
- int and double subtraction
* int and double multiplication
/ int and double division
% int remainder

Let’s look at a few examples.
Here we see classic integer arithmetic. The computer will carry

this out with standard order of operations so the value of this expres-
sion is 56.

3 + 4 * 15 - 7

This expression uses the integer remainder operation. You’ll need
to dredge up your long-division skills for this one. Recall that 3/2
is 1 with a remainder of 1. This expression takes on that remainder,
1, as its value. Put more formally, we can approach integer division
and the remainder operation through a single equation. Where a/b
is c with remainder r we can write a = cb + r. The integer division
operator gives us c and the remainder operator gives us r.

3 % 2

This is an expression of double arithmetic. The value of this ex-
pression happens to be 9440.0. Notice we’re keeping the 0 decimal
value in order to keep the type explicit. As far as the computer is
concerned 9440 and 9440.0 are two different things.

http://www.cplusplus.com/reference/climits/
http://www.cplusplus.com/reference/climits/

comp 161 - lecture notes - 06 - functional procedures 6

3.2 * 5.9 / 0.002

Our final example mixes integers and doubles. The truth is that
the compiler will force the 3 to 3.0 in order to first carry out double
division. The 5 is then converted to a double as well and the value of
the complete expression is 5.75.

5 + 3 / 4.0

In general, if one double is involved in the arithmetic, the whole
thing will use double operators. There are exceptions and they can
cause some real headaches. This expression has a value of 2.0. Do
you see why? Were you expecting 2.5?

1/2 + 6.0/3

Letters

A single letter can be represented by a char, or character type. By
default, C++ uses the ASCII18 encoding of letters and symbols. It’s 18 http://www.asciitable.com/

important to remember that a char value is only a single symbol. The
characters that might make you think otherwise are the characters
that use the escape character \. The most common example of this is
the character for a newline19, ’\n’. There are several other characters 19 enter key

using the backslash escape.
It’s occasionally useful to recognize that ASCII characters have

numerical values associated with them. This means that we can often
trick the compiler20 into doing unsigned integer arithmetic with char- 20 not really. it knows what’s going on

acters. While this is fun and does have its uses, you shouldn’t resort
to this until after you’ve checked out the standard set of character li-
braries for you’re desired character operation. The old C library ctype
is a good place to start21. In C++ it’s called cctype and we include it 21 http://www.cplusplus.com/

reference/cctype/in our code with

#include <cctype>

These “operators” are really just procedures, so using them re-
quires a procedure call. Notice that procedure/function invocation in
C++ is done like in mathematics22. 22 name(arguments)

tolower(’a’)

toupper(’a’)

isdigit(’5’)

isdigit(’ ’)

The first procedure returns ’a’, the second ’A’, the third true23, and 23 or 1

the last false24. The last two procedures are what we call predicates. 24 or 0

A predicate evaluates its input for some logical property and re-
turns a boolean value.

http://www.asciitable.com/
http://www.cplusplus.com/reference/cctype/
http://www.cplusplus.com/reference/cctype/

comp 161 - lecture notes - 06 - functional procedures 7

Booleans

Booleans are, at first glance, dead simple. There’s only two values:
true and false. The problem is that in C++ the integer value 0 is
equivalent to false and any non-zero integer is true. These days you
don’t have many good reasons to leverage this fact, but sometimes
you run into it by accident. The standard boolean operators look a bit
different in C++.

&& boolean and
|| boolean or
! boolean not

We also have standard comparison operators defined for built in
types.

== equal?
!= not equal?
<= less than or equal for numbers
>= greater than or equal for numbers
< less than for numbers
> greater than for numbers

The biggest change coming from BSL Racket that you’ll experience
is with the use of and and or. Not only are the operators different and
infix, but they’re strictly binary. Here’s a BSL Racket expression and
the equivalent C++.

(and a b c)

a && b && c

Similarly, the numerical comparison operators are strictly binary.
Here we see a ternary Racket comparison and the equivalent C++
expression.

(< 5 b 10)

5 < b && b < 10

Expressions vs Statements

Before

Simple Functional Procedures

We’ll first look at functional procedures. These are procedures which
take and return values and have no side effects25. Let’s look at two 25 just like Racket Functions

really basic numerical functions as examples. For these examples
we’ve already decided on our types.

comp 161 - lecture notes - 06 - functional procedures 8

1. Compute the cube of an integer

2. Given the slope, y-intercept of a line, and an x-coordinate on that
line, compute the y-coordinate that goes with the given x26. We’ll 26 recall y = mx + b

use doubles for all our values here.

We’ll put these functions in a library named practice with a names-
pace called practice.

Declarations

First we declare our functions in the library header. This means
making the function signature and purpose clear to the reader27. 27 compiler and programmer

Procedure declarations have two parts: the documentation and the
function header. Let’s declare our two functions.

/**

* Cube an integer

* @param x an arbitrary integer

* @return the cube of x

*/

int cube(int x);

/**

* Compute the y-coordinate for a point on a line.

* @param m the line’s slope

* @param b the line’s y-intercept

* @param x the x coordinate of the point

* @return y coordinate of the point

*/

double y_coordinate(double m, double b, double x);

All the text between the /* and */ is a comment and ignored by
the compiler. This is documentation for programmers. Notice how
the documentation style we’ll be using in C++ has all the things we
used in BSL Racket, but presents them differently. We start with a
purpose statement. Next we document each input with and param
tag. Finally, we document the return value with an return. We’ll learn
some other tags as we go along.

Next we notice the format for the function header28. The first 28 the non-comment line

thing you see is the type of the function’s return value. Next we see
the procedure name. The dash - is not allowed in C++ names so we
either use the underscore _ or a style called camel case, yCoordinate29. 29 see the camel-like humps?

The procedure’s argument is then given in parenthesis following the
procedure name. Multiple arguments are separated by commas. The
pattern here is:

comp 161 - lecture notes - 06 - functional procedures 9

RETURNTYPE NAME(ARGTYPE ARGNAME,...);

Our style of writing libraries puts function declarations inside
namespace blocks. Let’s see that:

namespace practice {

/**

* Cube an integer

* @param x an arbitrary integer

* @return the cube of x

*/

int cube(int anInt);

/**

* Compute the y-coordinate for a point on a line.

* @param m the line’s slope

* @param b the line’s y-intercept

* @param x the x coordinate of the point

* @return y coordinate of the point

*/

double y_coordinate(double m, double b, double x);

}

If our library had more functions, then we’d put them in the same
block. This block delineates the definitions found within the practice
namespace. That’s just a name we choose. The importance of the
namespace name is it adds another layer of naming to our functions.
This seems like extra work and complexity at first, but it pays off in
the long run. Calling functions declared in a namespace looks like
this:

practice::cube(5)

or more generally.

NAMESPACENAME::FUNCTIONNAME(ARG,...)

You can30 use a using namespace declaration within a function to 30 you’ll rarely see me do it though

direct the compiler towards namespaces being used. For example,

using namespace practice;

will direct the compiler to check the practice namespace for any
definition not in the global namespace. So when we call cube(5) it will
check practice for cube. You’ll see this as we start writing tests.

Stubs

Next we want to “stub out” our procedures in the library implemen-
tation file. The goal is to have something that compiles and runs.

comp 161 - lecture notes - 06 - functional procedures 10

That’s it. For both our functions this means making them return a
number of the correct type. If we do that, then the compiler has ev-
erything it needs to guarantee that the function signature is satisfied
by the definition. Let’s stub.

namespace practice{

int cube(int x){

return 0;

}

double y_coordinate(double m, double b, double x){

return 0.0;

}

}

Alternatively we can drop the namespace block and tag each defi-
nition with its namespace like this.

int practice::cube(int x){

return 0;

}

double practice::y_coordinate(double m, double b, double x){

return 0.0;

}

The advantage of the first is less typing. The advantage of the second
is keeping the indentation of our code down. You can decide which
you prefer31; just know how to read and interpret both when you see 31 I’ll almost always use option 2

them. The important thing is that you connect the definition with the
namespace!

Procedure stubs are complete procedure definitions. They con-
nect the header with a sequence of statements that execute when the
procedure is called. The sequence of statements is called the proce-
dure body of the procedure and is found within a set of curly
braces32 that follow the header line. The opening curly brace can also 32 not parenthesis

be written on the next line, but we’ll prefer the style shown above in
this class. Stubs typically have a single statement in the body. The
return statement. In Racket, the return value was implicit. In C++ we
must explicitly instruct the computer to return a value. The numbers
following the return are the values to be returned. As is typical, a
semi-colon ends the statement.

At this point you should stop and compile your library object file.
This will catch any syntax errors and give us foundation of working
code upon which we can build.

comp 161 - lecture notes - 06 - functional procedures 11

Tests

The next step is tests. Coming up with tests help us work out how
the procedure should work and give us something concrete to check
out implementation against when its done. In short, they force us to
prove to ourselves that we known what a correct implementation of
our procedure will do and they do so in a form that the computer
can also check. Nothing bad comes from writing tests first. The in-
vestment of your time is worth it.

In this class we’re using a testing framework written by Google for
testing their C++ code. It functions on the same principles as Racket
tests: check the return value of the function against an expected
value. The Google testing framework requires us to put a little more
effort in to organizing tests than Racket’s testing framework.

For each procedure we write we’ll typically define one test case
and at least one test. The basic template for a test is33: 33 Avoid underscores in case and test names

TEST(caseName,testName){

// expect statements

}

This looks like vaguely like a procedure definition. It is not. This is a
Macro. The C++ preprocessor will re-write this as C++34. 34 try just running some tests through

the pre-processor and you’ll see what I
mean

There’s no such thing as too many tests, but it is possible to write
too few. For these simple functions we can probably get away with
a single test. In general, you need to analyze the structure of the
problem and determine what cases exist within the problem and test
each case.

TEST(cube,allTests){

}

TEST(yCoordinate,allTests){

using namespace practice;

}

I’ve avoided underscores and went ahead and put a using namespace
statement in one test but not the other so you can see the difference.

The basic test we’ll write is an equality check35. For non-double 35 more here https://code.google.com/

p/googletest/wiki/Primervalues, we can check exact equality. For doubles we’ll need to check
that the value is close enough to our expected value. Thankfully,
Google wrote a test that does this for some fixed definition of “near”36. 36 https://code.google.com/p/

googletest/wiki/AdvancedGuide#

Floating-Point_Comparison
You also have the option to specify you’re own nearness by giving a

https://code.google.com/p/googletest/wiki/Primer
https://code.google.com/p/googletest/wiki/Primer
https://code.google.com/p/googletest/wiki/AdvancedGuide#Floating-Point_Comparison
https://code.google.com/p/googletest/wiki/AdvancedGuide#Floating-Point_Comparison
https://code.google.com/p/googletest/wiki/AdvancedGuide#Floating-Point_Comparison

comp 161 - lecture notes - 06 - functional procedures 12

delta value below which the absolute difference between the ex-
pected and actual double values must fall37. Equality for doubles is 37 |e− a| < DELTA

fraught with problems because of the inexactness of the representa-
tion. Racket saved you from worrying about this. C++ does not.

Your first goal with tests is to come up with one or more tests
that correctly capture the procedure’s purpose and force every
line of code in the procedure to execute. We call this code cover-
age. Given that we haven’t written a procedure, we’ll have to think
through the problem and imagine what tests will probably cover our
code and add more later if needed. More generally, we should come
up with a series of tests that cover a variety of situations ranging
from simple to complex. A good check on simplicity is if you can
do it yourself by hand or in your head. For our examples this means
small numbers or numbers that make the arithmetic really easy.

TEST(cube,allTests){

EXPECT_EQ(0,practice::cube(0));

EXPECT_EQ(1,practice::cube(1));

EXPECT_EQ(8,practice::cube(2));

EXPECT_EQ(1000,practice::cube(10));

EXPECT_EQ(-1,practice::cube(-1));

EXPECT_EQ(-8,practice::cube(-2));

}

TEST(yCoordinate,allTests){

using namespace practice;

// constant functions

// Using DOUBLE_EQ

EXPECT_DOUBLE_EQ(0.0,y_coordinate(0.0,0.0,0.0));

EXPECT_DOUBLE_EQ(0.0,y_coordinate(0.0,0.0,3.5));

EXPECT_DOUBLE_EQ(2.2,y_coordinate(0.0,2.2,3.5));

// slope 1 that hits the origin

// Using NEAR (the third argument is the delta

EXPECT_NEAR(4.0,y_coordinate(1.0,0.0,4.0) , 0.00000001);

EXPECT_NEAR(-3.1,y_coordinate(1.0,0.0,-3.1) , 0.00000001);

EXPECT_NEAR(-0.014,y_coordinate(1.0,0.0,-0.014) , 0.00000001);

//slope 1 that doesn’t hit the origin

EXPECT_DOUBLE_EQ(7.0,y_coordinate(1.0,3.0,4.0));

EXPECT_DOUBLE_EQ(-1.75,y_coordinate(1.0,2.25.0,-4.0));

EXPECT_DOUBLE_EQ(4.0,y_coordinate(1.0,0.0,4.0));

comp 161 - lecture notes - 06 - functional procedures 13

// a general case

EXPECT_DOUBLE_EQ(7.5,y_coordinate(2.5,5.0,1.0));

}

When testing doubles, you can start with DOUBLE_EQ and see
if your tests work within the implied correctness of that test. It’s
also often possible to choose test vales that are less likely to round
off funny and fall short of the EQ tests. In the end, there will al-
ways be cases where you need to loosen things up a bit and use
EXPECT_NEAR.

The overall pattern is to write expected values prior to actual
values.

EXPECT_*(expected,actual);

Once you tests are written you can compile and run the tests.
Odds are good they will all fail, but occasionally the stub gets it
right. Our goal isn’t for them to pass or fail it’s to start the process of
finishing the procedure from a place that quickly and easily allows us
to check out work. So assuming our tests are correct38, we can easily 38 Tests that don’t represent correct

behavior are always possible, so check
and double check your thinking!

run the tests to see if your implementation is on the right check.
After all, if you haven’t actually run the code with real data, then
you can’t really claim that it works. The fact that it compiles without
error means very little. We can make all kinds of garbage compile.

Completing the Definition

We’ve declared the procedures in our library header, stubbed them
out in the library implementation, and written a well thought out set
of tests. We’ve also compiled all of this code to rule out syntax errors
and set ourselves up with a foundation of correctness from which we
can work. Now let’s make these procedures carry out their intended
purpose by completing the definitions.

Knowing what code to write for functions on atomic data is
largely a matter of understanding the problem domain. So be ready
to research the problem. Use tests to explore the problem and strengthen
your understanding with concrete examples because the procedure
represents the solution for all possible inputs. Concrete examples
help shed light on this abstraction by showing one specific case from
many. After a few examples, you might see the pattern that results in
the general solution.

Very simple procedures can often be written with a single return
statement. That is the case with our example procedures. One defini-
tion is placed in a namespace block, the other declares its namespace

comp 161 - lecture notes - 06 - functional procedures 14

in the header. You should pick one style and stick to it. I did them
both only for demonstration purposes.

namespace practice{

int cube(int x){

return x*x*x;

}

}

double practice::y_coordinate(double m, double b, double x){

return m*x + b;

}

Functional Procedures With Conditionals

Let’s say we needed to solve some kind of classic tax problem where
for an income in 0 to 500 we pay 10% tax, for 501 to 1000 we pay
15%, and for an income above 1000 we pay 25%. Well what we have
is an itemization. In this case we’re dealing with a series of numeric
intervals39 39 notation reminder: [or] means the

number is included and (or) means its
excluded from the interval.1. [0, 500]

2. [501, 1000]

3. (1000, ∞)

What we’re looking at is a procedure that takes as input a double
which is a number from one of these intervals and we’ll need con-
ditional logic to manage the problem. In Racket we had the cond ex-
pression. In C++ we’ll mainly work with if else if .. else statements.
It’s important to remember that conditionals in C++ are statements
not expressions!

Declarations

Really there’s nothing new going on in the documentation and decla-
ration. It would, however, be helpful if we documented the different
cases.

namespace practice{

/**

* Compute the taxes for a given income.

comp 161 - lecture notes - 06 - functional procedures 15

* Income can fall into three brackets [0,500], [501,1000],

* and (1000,inf)

* @param income The individual’s income

* @return taxes owed

*/

double my_taxes(double income);

}

This declaration tells us more about the problem without crossing
the line into describing a solution. The benefit to you is that you’re
forced to write down the variants of the input and this acts as a check
on your thinking. The benefit to the reader is they know more about
the problem. In a more immediate sense, when I’m reading the more
complete documentation I can tell more about your understanding
of the problem than I can with the first. More often than not, pro-
gramming problems stem from misunderstanding the problem, not
the program. I won’t force you to use the more detailed documenta-
tion style, but you’re doing yourself a big favor if you do. However,
if you’re getting help from me, then I might require you to write it
if I’m not convinced you understand the problem you’re trying to
solve.

Stubs

You can stub your procedures for itemized data in the exact same
way you do those for atomics.

double practice::my_taxes(double income){

return 0.0;

}

We could potential start working out the logical template for the
conditional, but that will tempt us to go too far and complete the
implementation. The goal of the stub is to get the simplest possi-
ble definition that satisfies the signature. So once again, we simply
return a literal value from our return type.

Tests

It helps if we think of procedures with conditionals as a set of related
by disjoint procedures. Each variant does its own thing. In terms of
testing, this implies that we write a set of tests for each variant. You
can probably get away with a single set of tests for the whole thing,
but when you run into a problem case, a variant that is trickier than
the others, you’ll end up having to stare at test results for all of the

comp 161 - lecture notes - 06 - functional procedures 16

variants you don’t care about. By writing a separate set of tests for
each variant you have the chance to run the tests for each variant
separately from the others. I won’t make a big deal out of this unless
you’re having problems with a procedure for itemized data. I might
then ask you to rewrite your tests to break out each case. Doing this
can help narrow in on problems and forces you to think more deeply
about the problem at hand.

Our tax problem has three variants so we’ll write three sets of
tests. When working with intervals we should be certain to test the
boundary values.

TEST(myTaxes,from0to500){

EXPECT_DOUBLE_EQ(0.0 ,practice::my_taxes(0.0));

EXPECT_DOUBLE_EQ(10.0 ,practice::my_taxes(100.0));

EXPECT_DOUBLE_EQ(20.0 ,practice::my_taxes(200.0));

EXPECT_DOUBLE_EQ(37.55 ,practice::my_taxes(375.5));

EXPECT_DOUBLE_EQ(50.0 ,practice::my_taxes(500.0));

}

TEST(myTaxes,from501to1000){

EXPECT_DOUBLE_EQ(75.15 ,practice::my_taxes(501.0));

EXPECT_DOUBLE_EQ(90.0 ,practice::my_taxes(600.0));

EXPECT_DOUBLE_EQ(112.5 ,practice::my_taxes(750.0));

EXPECT_DOUBLE_EQ(150.0 ,practice::my_taxes(1000.0));

}

TEST(myTaxes,from1000up){

EXPECT_DOUBLE_EQ(250.0025 ,practice::my_taxes(1000.01));

EXPECT_DOUBLE_EQ(500.0 ,practice::my_taxes(2000.0));

EXPECT_DOUBLE_EQ(2500.0 ,practice::my_taxes(10000.0));

EXPECT_DOUBLE_EQ(25000.0 ,practice::my_taxes(100000.0));

}

Notice that we cover the boundary values in each variant. It’s also
worth noting that our double based function can and will spit out
numbers that aren’t dollar values. If you’re writing a real application
involving money, you might do well to remember that doubles are
not money and you should expect to spend a lot of time managing
the difference if you choose to represent the former with the later40 40 look for libraries our if you can’t find

one build your own money type

comp 161 - lecture notes - 06 - functional procedures 17

Completing the Function

Before we get to the conditionals, let’s talk about the helper pro-
cedures. You don’t always have to write helpers. You do yourself
some favors if you do. If it turns out one variant has some really non-
obvious logic, then making a helper lets you logically and physically
set that apart from the big picture of the itemization. You can set this
problem case aside, finish the rest, and then go on to the complex
case. In short, always using helpers will keep you sane with things
get rough. It forces you to break the problem in to tiny, manageable
pieces and helps to avoid getting overwhelmed by large, complex
problems. I won’t force you to always write helpers, but if you get
stuck, I will. Our example problem is simple enough that helpers are
needed, but I will talk about how to approach the task of writing and
designing helpers after we do it without them.

The C++ conditional statement we’ll focus on is very similar to the
Racket cond expression. It lets you identify a series of cases such that
if the condition on the first is false, it will move on to the next and so
forth. You can also add an else case that catches everything that does
not meet any of the cases proceeding it.

Let’s start by writing a skeleton for the conditional. We have three
variants so we need three cases. This first is the if case, the second is
the else if, and the last can be the else41. It’s helpful to label each case 41 else is tricky here. more on that later

with a comment describing the variant you plan to associate with the
case.

double practice::my_taxes(double income){

if(){ //[0,500]

}

else if(){ //[501,1000]

}

else{ //(1000,inf)

}

}

We can now go in and fill in the logical expressions that check the
procedure argument income for it’s variant type. These expressions go
within the parenthesis following the if and else if in the expression.
No logical check accompanies else because it’s “everything that’s
not one of the above things”. You’ll notice the strict use of binary
operations that C++ forces upon us. This is also a good time to re-

comp 161 - lecture notes - 06 - functional procedures 18

stub the procedure. The skeleton wouldn’t compile. We don’t like to
stray too far from code that compiles.

double practice::my_taxes(double income){

if(income >= 0.0 && income <= 500.0){ //[0,500]

return 0.0;

}

else if(income > 500.0 && income <= 1000.0){ //[501,1000]

return 0.0;

}

else{ //(1000,inf)

return 0.0;

}

}

At this point we have a completely defined function again. It’s a
good time to compile. You can also change the return values such
that they’re different for each case. By doing this you can see if each
case is getting caught correctly by the return value42. 42 Run your test. If the value that causes

a failure is the value returned in the
else if and that’s case you were aiming
for, then you’re at least picking that up
correctly

Now let’s finish this thing out.

double practice::my_taxes(double income){

if(income >= 0.0 && income <= 500.0){ //[0,500]

return income * 0.1;

}

else if(income > 500.0 && income <= 1000.0){ //[501,1000]

return income * 0.15;

}

else{ //(1000,inf)

return income * 0.25;

}

}

We’re done. Run your tests. If they fail then either the test is wrong
or your code is wrong. Check both. There is one problem with this
version. It’s kind of wrong. If, for some reason income is a negative
number, then the return value is 25% of that negative number. It’s
fair to assume that income is never negative. Within the problem do-
main it doesn’t really make sense, does it? If we’re making some
assumption about our data, then we must document it. These assump-
tions are called preconditions. We document them in the header
documentation. So if this is our final version of my_taxes, then our
documentation should be revised as follows:

/**

comp 161 - lecture notes - 06 - functional procedures 19

* Compute the taxes for a given income.

* Income can fall into three brackets [0,500], [501,1000],

* and (1000,inf)

* @param income The individual’s income

* @return taxes owed

* @preconditions income >= 0.0

*/

double my_taxes(double income);

So our solution was simple, “User be warned! We do not guaran-
tee correct functionality if preconditions are not met!”. We passed
the buck to whom ever uses this procedure. Alternatively we could
make the reasonable assumption that negative income results in 0.0
taxes.43. Let’s quickly review the conditional statement in general 43 Eventually we’ll explore the option of

generating a run-time errorand then explore this revised version of our function.
In general, these if based conditional can take lots of shapes. The

else and else if s are optional. So, you can have just an if. You can have
as many else if s as you need. If we try to mimic the notation we saw
in the Bash command manuals, then we can capture the pattern as
follows:

if(BOOL-EXP){

STATEMENT-SEQ

}

[else if(BOOL-EXP){

STATEMENT-SEQ

}

...]

[else {

STATEMENT-SEQ

}]

In plain English: “Conditionals are built from an if statement fol-
lowed by zero or more else ifs and at most one else.” There are some
other variations on this structure that we’ll for the most part ignore44. 44 see http://www.cplusplus.com/doc/

tutorial/control/For example, the curly braces are optional if the statement sequence
is a single statement. There is one rule we need to be aware of for
functions. There must be a return statement in an else or outside
of the conditional. Put another way, the compiler must be able to
guarantee that the function will return the appropriate data type. To
see what I mean, let’s look at a version of our function that handles
negative numbers.

double practice::my_taxes(double income){

if(income >= 0.0 && income <= 500.0){ //[0,500]

http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/

comp 161 - lecture notes - 06 - functional procedures 20

return income * 0.1;

}

else if(income > 500.0 && income <= 1000.0){ //[501,1000]

return income * 0.15;

}

else if(income > 1000.0){ //(1000,inf)

return income * 0.25;

}

return 0.0;

}

This version uses a sequence of two statements: the conditional
and an unconditional return. If any of the conditions in the condi-
tional are met, then the value indicated within that condition will
be returned. So if income is 400, our function will return 40.0. This
means only one return statement is ever executed. Once a function returns,
it stops executing at the return and the program continues at the place
where the function was called. Now, imagine the return 0.0 were not
there. What happens if income is −5.0? Right, you just don’t know.
Nothing is the best answer, and that’s not acceptable because the
function must return a double. To guarantee something gets returned
we add that final return. This satisfies the compiler45 and guarantees 45 which knows nothing about actual

values seen at when the code is execut-
ing

the return of a double value. While this version works, it’s not my
favorite style for this kind of situation. I would, instead, use an else.

double practice::my_taxes(double income){

if(income >= 0.0 && income <= 500.0){ //[0,500]

return income * 0.1;

}

else if(income > 500.0 && income <= 1000.0){ //[501,1000]

return income * 0.15;

}

else if(income > 1000.0){ //(1000,inf)

return income * 0.25;

}

else{ // this shouldn’t happen?!

return 0.0;

}

}

The else has no condition on it, so it would catch the −5.0 case.
This version is nice because it keeps all the logic about income vari-
ants in one place. I prefer this style and encourage you to use it. The
previous style is pretty common though; I call it an implied else as the

comp 161 - lecture notes - 06 - functional procedures 21

final return is encountered if and only if all the conditions in the con-
ditional are false. This is the exact situation that causes else blocks to
execute. As we move to more complex code, we’ll find good times to
use an implied else. I just don’t think this is one of those times.

Technically, we changed our problem a bit. Let’s revise the docu-
mentation before we move on.

namespace practice{

/**

* Compute the taxes for a given income.

* Income can fall into four brackets (-inf,0),[0,500], [501,1000],

* and (1000,inf)

* @param income The individual’s income

* @return taxes owed

*/

double my_taxes(double income);

}

We need to test the new variant as well. This test is super easy.

TEST(myTaxes,negatives){

EXPECT_DOUBLE_EQ(0.0,practice::my_taxes(-0.001));

EXPECT_DOUBLE_EQ(0.0 ,practice::my_taxes(-2000.0));

EXPECT_DOUBLE_EQ(0.0 ,practice::my_taxes(-1234.56));

EXPECT_DOUBLE_EQ(0.0 ,practice::my_taxes(-5.0));

}

It’s not uncommon to encounter something you missed when
working out the logic of a function. Just be certain to go back and
revisit your documentation and tests to reflect your new thinking
about the problem and its solution.

OK. Before we walk away, let’s look at one more way of writing
this function.

double practice::my_taxes(double income){

if(income < 0.0){

return 0.0;

}

else if(income <= 500.0){ //[0,500]

return income * 0.1;

}

comp 161 - lecture notes - 06 - functional procedures 22

else if(income <= 1000.0){ //[501,1000]

return income * 0.15;

}

else{ //(1000,inf)

return income * 0.25;

}

}

By re-ordering how we check our variants we can leverage the
implicit conditions built in the statement and simplify the boolean
expressions used at each step. For example, any negative value gets
caught by the if clause. So, if we’re looking at the first else if, then
income must implicitly be greater than or equal to 0.0 or the if clause
would have been true and the function would have returned 0.0.
There’s no need for us to check for income >= 0.0, we’ve already
determined that much is true of income. This logic continues as we
move down the conditional. Finally, the else is really a true else state-
ment. When you hit the else, all other clauses were false and the
value of income must be greater than 1000.0.

This revision of our function merits discussion. Does if offer any
benefits when compared to the version that checks for negative val-
ues after checking all the original variants. Is it better? They’re both
equally correct. The first is arguably simpler because the exact condi-
tions for each variant are explicitly covered in the boolean expression.
The reader does not have to pickup on the implied conditions that
occur as you move down the conditional statement. However, a few
comments and proper documentation make this clear and the overall
logic isn’t too complicated. So perhaps they’re both pretty simple in
terms of capturing the logic needed to solve our problem. The last
thing we might compare is efficiency. In this regard our revision has
a slight advantage. Previously we’d check both the upper and lower
boundary for each case. Now we only check one boundary. This also
means we can drop the boolean && operators with each case. So, it
would seem that we’ve saved on work, but just a little. In truth, these
are pretty much the same on the efficiency front. They’re so close that
we won’t worry about it until it’s a problem. That means until we
have empirical evidence that this procedure is slowing things down
and worth optimizing, we don’t need to quibble over the differences
here. Instead, you the program, can choose the option that makes the
most sense to you. I prefer the second because to me, it more clearly
lays out the logic of the problem as we understand it now. The first
is as much a reflection of how we came to understand the problem
as it is the problem itself; the negatives are tacked on after the fact
and that forces us to use more verbose boolean expressions. Put in
general terms, the final versions seems to me to be a function that

comp 161 - lecture notes - 06 - functional procedures 23

was not only written, but revised for clarity. It’s a clean second draft
where the first is a less clear first draft. So, let’s see that last version
one more time:

double practice::my_taxes(double income){

if(income < 0.0){

return 0.0;

}

else if(income <= 500.0){ //[0,500]

return income * 0.1;

}

else if(income <= 1000.0){ //[501,1000]

return income * 0.15;

}

else{ //(1000,inf)

return income * 0.25;

}

}

A Recursive Function

Recursive functions require conditionals and demonstrate function
calls within a function definition as they must at least call themselves.
Below is the basic recursive factorial function from lab 2. Notice that
there’s not much new going on in terms of syntax. We do make a
recursive call in the definition, but we’ve actually already done lots of
function calls in our tests.

Documentation and Declaration:

namespace ver1{

/**

* Compute the factorial of n

* @param n integer

* @return the factorial of n

* @preconditions n>=0

*/

int factorial (int n);

}

Stub:

int ver1::factorial(int n){

return 0;

}

Tests:

comp 161 - lecture notes - 06 - functional procedures 24

TEST(ver1,factorial){

// base case

EXPECT_EQ(1,ver1::factorial(0));

EXPECT_EQ(1,ver1::factorial(1));

// recursive case

EXPECT_EQ(2,ver1::factorial(2));

EXPECT_EQ(6,ver1::factorial(3));

EXPECT_EQ(120,ver1::factorial(5));

}

Implementation:

int ver1::factorial(int n){

if(n == 0){

return 1;

}

else{

return n * ver1::factorial(n-1);

}

}

A Note About Predicates

Functions that return a bool value are often called predicates or
boolean-valued functions. Boolean expressions can always be re-
placed by predicate functions, and since boolean expressions are an
integral part of control structures like our if...else if...else statements,
we’ll stop and talk about a clean, concise style of writing predicates.
It’s often a good idea to write predicates helpers to clear out long and
hard to parse boolean expressions.

In many cases, predicates can, and should, be written without
the use of conditional statements. The temptation is to view it as
a two-variant itemization: all the values for which the condition is
true and all the others for which it is false. For example, let’s say we
need a predicate isEven which takes an int type and returns true if it
is even and false otherwise. Here’s some tests that demonstrate it’s
functionality and how to test boolean values.

TEST(isEven,all){

EXPECT_TRUE(practice::isEven(2));

EXPECT_TRUE(practice::isEven(0));

EXPECT_TRUE(practice::isEven(-2));

comp 161 - lecture notes - 06 - functional procedures 25

EXPECT_TRUE(practice::isEven(12348));

EXPECT_FALSE(practice::isEven(1));

EXPECT_FALSE(practice::isEven(17));

EXPECT_FALSE(practice::isEven(-1));

EXPECT_FALSE(practice::isEven(1327));

}

To implement this We could focus on the variants and write a
procedure for itemized data like this:

bool practice::isEven(int n){

if(n % 2 == 0){

return true;

}

else{

return false;

}

}

However, notice that the boolean expression n % 2 == 0 takes on
exactly the value we want to return. So, a better implementation is to
simply return the value of that expression.

bool practice::isEven(int n){

return n % 2 == 0;

}

Maybe you were thinking check for odds then let evens be the else
case? That’s OK, you can always use the boolean negation operator !
to “flip” the result. This

bool practice::isEven(int n){

if(n % 2 == 1){

return false;

}

else{

return true;

}

}

becomes,

comp 161 - lecture notes - 06 - functional procedures 26

bool practice::isEven(int n){

return !(n % 2 == 1);

}

I prefer the brevity of predicates that do not use conditionals. It is,
again, more or less a stylistic choice. You should be able to do both,
but can choose which sits better with you in the end.

A Note on Naming and Documentation for Functions

Names should be descriptive and make sense within the domain
of the problem you’re solving. For our functions we need to name
the function and it’s arguments. All our names should describe in-
formation from the problem that our function is meant to address.
Argument names should describe the information they represent and
function names should describe the information represented by the
return value46. 46 if you understand why this might

be then you’ve got a good conceptual
grasp of functions

We got away with simple one letter names for arguments with
our mathematical examples because that’s what mathematicians use.
They make sense within the problem domain. On the other hand, we
used the more descriptive income in our tax problem. At the end of
the day, you should err on the side of descriptive.

The documentation we provide in our library header file should
also be focused on the details about the problem we’re addressing
and the information we’re representing. Rarely should we provide
concrete details about how we’re solving the problem. The biggest
mistake I see students make is to write purpose statements as an En-
glish translation of the function code. This is wrong. Just wrong. You
can avoid this with functions by focusing on the high-level relation-
ship between the inputs and the output and ultimately describing the
function output.

A Note on char data

We didn’t see an example that uses char type data. There isn’t much
new going on with them. They’re tested just like integers. Here are
the cctype examples from before written as tests to illustrate the point:

EXPECT_EQ(’a’,tolower(’a’));

EXPECT_EQ(’A’,toupper(’a’));

EXPECT_TRUE(isdigit(’5’));

EXPECT_FALSE(isdigit(’ ’));

comp 161 - lecture notes - 06 - functional procedures 27

The only other thing worth pointing out here is that old C li-
braries, like cctype, don’t use namespaces. Their definitions are tech-
nically in the global namespace which doesn’t require a namespace
specifier or using namespace declaration. We don’t put our defini-
tions there as a matter of good style and best practices.

	Design and Development Process
	Static Typing in C++
	Basic types in C++
	Expressions vs Statements
	Simple Functional Procedures
	Functional Procedures With Conditionals
	A Recursive Function
	A Note About Predicates
	A Note on Naming and Documentation for Functions
	A Note on char data

