
COMP 161
Lecture Notes 03
Working with the Shell
January 12, 2017

In these notes we’ll dig deeper into the CLI and see how working with
bash gets us ready for the bigger changes in mindset we need to work
with C++.

Essentials For This Class

There are a few things not discussed in your CLI tutorial that merit
some discussion as they are integral to doing anything in this class.

Submitting assignments with handin

A script written for us by a former CS professor1 here at Monmouth 1 Thanks, Don Blaheta!

allows you to submit most of your assignments via the server. The
name of the script2 is handin. Like many CLI commands, its usage is 2 and the command

documented in help text accessible with the -h option like so3: 3 Go read the documentation. Now.

handin -h

Submitting files is done by listing the course and assignment name
as arguments along with the names4 to the files you’re submitting. 4 path

handin course assignment file[s]

We’ll almost always just submit a directory containing all the
files we wish to submit. The handin script will zip these up for easy
processing. In the first lab you’ll run this command to submit the
folder lab1 as assignment lab1 for the course comp161

5. 5 the second lab1 is the directory name

handin comp161 lab1 lab1

It is possible to retract a submission from handin as long as the
instruction hasn’t collected that assignment. You should make cer-
tain that only one set of files is submitted per assignment. I usually
get the most recent submission, but sometimes not. If not, and your
grade is lower as a result, it might not get corrected as its your re-
sponsibility to hand in the correct work. So, I highly recommend you
check the handin help text for how to work with previously submit-
ted work.

comp 161 lecture notes 03 working with the shell 2

Emacs Commands

Emacs is the text editor we’ll be learning in this class. Commands
usually require you to combine some keys with the ctrl6 key or the 6 shown as C on the sheet

meta key7. For example, the command to close Emacs is written C- 7 Shown as M. See below.

x C-c. That means, “press and hold ctrl then x, then release them,
then press and hold ctrl then c, and release them.” It should feel like
your rolling through keys starting with ctrl. If you’re familiar with
the windows command ctrl-alt-del, then you know what I’m talking
about.

If you’re at the CLI, you need two things really:

• To launch emacs: emacs

• To open/create a file with emacs: emacs filename

Once you’re in Emacs you’ll need at least these three emacs com-
mands.

• To start the tutorial: C-h t

• Save current file: C-x C-s

• Close Emacs: C-x C-c

The tutorial will walk you through a host of other essential Emacs
commands and is part of your first lab and homework assignment.
Like the CLI, you can fight the Emacs way of doing things or you can
buy-in and take the time to learn and use the commands. When you
do buy-in, you’ll find that Emacs is insanely powerful and will save
you a lot of time and frustration down the line. Professionals use it
for a reason.

Emacs Meta Key

If you’re on a linux or windows machine, then you have an alt key.
That’s your meta key. So commands like M-b are telling you to press
and hold alt then b, then release both. If, however, you’re on a Mac,
you lack and alt key. You have two options8: use the Esc key or tell 8 http://stackoverflow.com/a/

3566557/1042494your terminal to use option as the meta key. If you go the route of esc,
then I don’t believe you hold the the key down9. 9 I could be wrong about that.

Paths

Much of what you do in the shell will deal with specifying the loca-
tion of a file or folder on the server via it’s path. In fact any time you
reference a file or folder in a command you can use a path instead.
This means you can pretty much work on any file in the computer

http://stackoverflow.com/a/3566557/1042494
http://stackoverflow.com/a/3566557/1042494

comp 161 lecture notes 03 working with the shell 3

from anywhere else on the computer. Realizing this can make you
life much easier. For example, if you need to copy a file from folder A
to folder B but you’re in folder C, then there is zero reason for you to
switch either folder A nor B. This is hard to grasp coming from a GUI
environment. You can’t click on a file if you don’t have the file ex-
plore open to the directory containing that file. This spacial limitation
does not exist on the CLI.

Paths come in two flavors: relative and absolute. Understanding the
differences between these path variants and how to use, or spot, one
versus the other is an important part of life at the CLI.

Absolute Paths

Absolute paths always begin from the main directory of the file sys-
tem, root or /. For that reason they’re easy to spot:

When a path begins with /, then it’s an absolute path.

For example, everyone has a home directory on the system and all
the home directories are found within the home directory. The home
directory is in turn, housed within /. So the absolute path to the
home directory for user jdoe is: the ending / on the path is optional.

I like it because it makes the fact that
we’re explicitly dealing with a directory/home/jdoe/

Absolute paths are great because they unambiguously specify a
file or folder on the system. Dr. James Logan Mayfield, IV is my full,
absolute, name. You’re unlikely to get me confused with anyone else
if you use it. On the other hand, that name, like absolute paths are
often long and unwieldy. This makes them hard to type10 and often 10 TAB autocomplete solves this prob-

lem!requires some big picture understanding of the file system’s overall
organizational structure.

Relative Paths

Relative paths specify a path relative to your current working direc-
tory11. Put another way, the absolute path to your working directory 11 the pwd command tells you what that

isis an assumed prefix to the absolute path of the file or folder in ques-
tion. There are a few ways to recognize and write relative paths. The
first is, in my feeling, more explicit and therefore less prone to am-
biguity. The path to your current working directory can always be
invoked with the shortcut ./12. This leads to your first indicator of a 12 read ./ as “here”

relative path:

When a path begins with ./, then it’s a relative path.

So if my current directory is /home/ then we can form the relative
path to jdoe’s home directory like this:

comp 161 lecture notes 03 working with the shell 4

./jdoe/

It turns out that the ./ is optional and this leads to the other typical
way of picking out a relative path.

When something shows up where a file/folder path specification is
supposed to be and there’s no leading /, then it’s a relative path.

If we are once again working out of /home/ then jdoe/ is a valid rela-
tive path to jdoe’s home directory. In general, I like using ./ because
it’s clear you’re providing a path. Leaving off ./ leaves it to the reader
to decide the thing they’re about to read is a path13. 13 thankfully when the reader is the OS,

you tend not to have problems

Path Shortcuts

In addition to the ./ shortcut to the current working directory, there
are a two path shortcuts you should memorize.

1. ../

This shortcut always refers to the parent of ./. If you’re in your
personal home directory, then ../ is /home/. If you’re in /home/, then
../ is /. The odd directory out is /. It has no parent, so the system
treats it as its own parent. That means that relative to root, ../
is still root. So, when you’re not in /, cd ../ is like hitting the up
button14 in your GUI. 14 not necessarily the back button

2. ~

This shortcut is your home directory. So cd ~ is the command to
“go home”.

It’s worth noting that adding -a to ls adds .15 and ..16 to the list of 15 here
16 parent of heredirectory contents.17

17 try it out!

The Power of Paths

As stated earlier, it is possible to run commands on files that are not
in your current working directory by using their path in the com-
mand. In fact, anytime you specify a file or folder name without its
path, you’re actually give a relative path to a file in the current work-
ing directory! Compare this to working in the GUI. You typically
have to navigate to the folder containing the file you wish to work
with, and then select that file. In a CLI environment you can run a
command on any file on the system from any directory on the sys-
tem18. This kind of capability is necessary for copying files. If you 18 assuming you have the proper file

permissionswant to copy file a to your current working directory and a is in your
current directory’s parent directory then you can run

cp ../a ./

comp 161 lecture notes 03 working with the shell 5

. What you might not realize is that you can also do things like this

cp ../a ./sub/folder/over/here/

. Notice that neither the target file nor the destination is the current
working directory!

If you’re going to repeatedly work on a one or more files in a
specific directory, then it makes sense to be in that directory. If, how-
ever, you’re running a one off command involving files not in your
working directory, then resist the urge to first change your working
directory before running the command. When you tap into the power
of paths, you can save a lot of time at the CLI.

Racket Functions and CLI commands

If you made use of the interaction window in Dr. Racket, then you’re
setup pretty well for the basics of the CLI. Let’s review what do we
know about using Racket functions at the interaction window:

• They use prefix notation in which the operator19 comes before the 19 command name, function name, etc

operands20 and everything is separated by white space. 20 arguments/inputs

• Function invocations are surrounded by parenthesis.

• Racket functions have one or more parameters and the number of
parameters for a given function is fixed. Additionally, the order in
which you pass parameters matters.

• Racket functions take data values as input and return them as out-
put, always. Given the same input, a Racket function will always
produce the same output.21 21 This is the essential property of

functions
The question we now ask is, in what ways are CLI commands similar
to and different from Racket functions?

Here’s what we’ll learn:

• Bash commands also use prefix notation and white space to sepa-
rate the command name and its arguments

• Bash commands are not surrounded by parenthesis

• Bash commands can have zero or more parameters and many
commands have optional parameters. This means that one com-
mand can take a variable number of parameters

• Bash commands don’t always produce output at the CLI. Some-
times they produce a side-effect on the system that we can’t see
unless we look for it. Some commands will produce different re-
sults on the same input, or they have different behaviors based on
the state of the system.

comp 161 lecture notes 03 working with the shell 6

In the end they’re both REPL interfaces. The big differences all
stem from the fact that most of the commands we use on the CLI are
not functions but imperative procedures that interact with the state of
the computer in some way. We’ll explore this idea in detail with some
examples. It’s a very important concept and one that will form the
basis for a lot of our work in C++. Pay careful attention as you read
ahead.

The Environment and State

Run the command env at the CLI. What you see is a list of state

variables and their values. These variables are specific to you and
your session. For now we want to look at three of them: HOME,
PWD, PATH. The first stores the path of your home directory, the
second your current working directory, and the last lists all the direc-
tories where the computer should find the commands that you type.
The values of these variables determine a part of the state of the sys-
tem and thereby effect the results of certain commands. To see their
current value run the command echo $VARNAME. For example, echo
$PWD will print out the value of the PWD variable22. 22 Go print out all their values now

Racket functions23 are stateless. Their action is strictly determined 23 at least the ones you wrote in
COMP160by their inputs. Given a particular input they will always produce

the same output. They are completely predictable in this manner.
Statefull procedures like most of our CLI commands have results
that are dependent on their inputs and the state of the system24. This 24 the current values of these variables

and things like the contents of the hard
drive

means that a command can produce different outcomes with the
same argument if the state of the system has changed.

Function Inputs and Outputs vs. I/O

In a functional world we often talked about the inputs and outputs
of a function. More formally, we might call these the function ar-
guments and return value. This is very different that the kind of
Input and Output we’ll deal with on the CLI and in C++. When
Dr. Racket printed the return value of a function it was implicitly
carrying out an output operation that displayed the return value
to the interaction window. Similarly, when Dr.Racket read the code
typed at the interaction prompt, it was carrying out an implicit in-
put operation. You, the programmer, didn’t need to explicitly cause
the program to read code from the prompt and print results to the
prompt. Put another way, you directly requested something happen
on the monitor or keyboard. This was all do for you by the REPL
code.

A REPL encapsulates a very basic computational interface: read
input from the user, compute something based on that input, then

comp 161 lecture notes 03 working with the shell 7

output the result. You’ve been interacting with I/O25 implicitly. Now 25 Input/Output

you’ll do so explicitly. This can be a tricky thing to get used to. The
“input” and “output” from your functions are not at all the input and
output we’ll be dealing with at the CLI and in C++.

Bash examples

Let’s see how interacting with state, input, and output all plays
out with some of the most common bash commands.

1. cd directory

What happens when you invoke the change directory command?
First the system goes and looks in every direction listed in your
PATH variable to see if there is a command named cd26. Once 26 type which cd to see the absolute path

of the commandit finds it, it executes that command with the arguments. If the
argument is a relative path then it is effectively appended to the
the value of your PWD variable to get an absolute path. Already,
we see that even the basic execution of the command is dependent
on system state.

Now what’s the result of cd? We get no output. This is because
the cd command is a mutator. It’s purpose is to change the value
of a state variable, namely PWD. Mutators are an important class
of procedures for the style of programs we’ll be writing in C++.
Once you have state, you tend to want to change it and mutators
provide a consistent means of abstracting this action.

2. ls, ls -l, and ls -la

Here we see three variations of ls with zero, one, and two argu-
ments respectively. What you probably don’t know is that ls -la
and ls -al are both allowable and equivalent. So not only can we
have a variable number of arguments, but order doesn’t necessar-
ily matter! You probably didn’t have this kind of flexibility in your
Racket functions. You could write functions that would allow this,
but it takes a lot of extra work.

The execution of ls interacts with PATH in the same way that cd
does27. The ls command is clearly not a mutator. No variables 27 all commands do, so we’ll stop

talking about itchange. It does, however produce some output and that output
is not solely dependent on the arguments. The arguments control
formatting, but at the end of the day the output is really driven by
the contents of your current directory. This makes ls an Accessor

procedure. It retrieves the value of the PWD variable, and then
displays the contents of that directory28. 28 so it’s also dependent on the state of

the file system itself. Not just PWD.
3. echo $(ls)

comp 161 lecture notes 03 working with the shell 8

The output of ls is not functional output. It’s just like the output
produced by Dr.Racket’s REPL. The command produced a string
value and then the CLI printed it to what’s called the standard out-
put29. The above command is an explicit output command for 29 the screen/CLI prompt

printing the result of ls. What you’ll see is the raw unformatted
string value returned by the ls command. Notice you lose all the
nice formatting that the CLI injects30 when it prints. If you wanted 30 because of some state!

it back, you’d have to put it in yourself and in doing so rewrite
part or all of the ls command. How does this work? The echo al-
lows the programmer to explicitly produce printed output. By
surrounding ls with $() we invoke command substitution which
takes the result of the command and places it inline on the CLI.
This is the equivalent of nesting functions in Racket31. 31 (echo (ls))

With just a few commands we’ve encountered several classes of
procedures that we’ll be designing and implementing in C++: mu-
tators and accessors facilitate standard interactions with state

variables. output procedures write values to the standard output
giving the programmer control over what gets printed, or written, to
the screen. Mutators and output procedures are particularly notable
because their purpose is to produce a side-effect. A mutator mod-
ifies state, which in turn can change how other commands behave.
It affects other parts of the computer. An output procedure writes
information to an output device where there is none. Strictly speak-
ing, it has not functional value32. To really get a feel for I/O based 32 in the Racket Function sense

programming we should really look at redirect though.

Redirects

Your tutorial introduced several redirects. These all modify the ex-
pected I/O behavior of CLI commands.

1. | redirects output written to the standard output to the the stan-
dard input, where it can be read by he command on the left of the
redirect. What would have been written output is now something
that appears to be text typed by the user for the command on the
left hand side of the redirect.

2. > redirects text that was to be written to the standard output to a
file instead.

3. >> like > but with a variation on the write effect (append vs
overwrite)

The < redirect is a bit different as you’re not really redirecting an
effect as much as you’re causing one. That is, the name of a file is not
an implicit command to write to stdout, and so using < is probably

comp 161 lecture notes 03 working with the shell 9

best though of as a compound effect: read from a file and write its
contents to the standard input. This is really just a description of the

< redirection uses we’ve seen. Others
exist.

By using redirects we can start to build compound operations.
Just like we can nest function calls in Racket so that the output of one
function is the input to another, we can redirect the output of one
Bash command to another. Hello programming.

Expansions

Expansions tap into the core ideas of functional input and output
in that they allow you to substitute one value for another within a
particular command just like we can substitute the return value of a
function for it’s function call when evaluating a Racket expression.
The key here is that we’re thinking about value substitution as
opposed to some kind of effect redirection.

Shortcuts represent a basic form of expansion. In some cases
they’re as simple as named values. For example, for the user jdoe,
the expression has the value of /home/jdoe/ and we can pretty much
use the former anywhere we want the later. The short cut for here, ./,
and parent, ../, are a bit more complex as their value is dependent on
the PWD state variable.

One of the most useful expansions is wildcard, * expansion. Here
the expressions expands to all values which match a specific pat-
tern. The pattern ./*.pdf expands to the path to all of the pdfs in the
current directory. If you have 32 pdfs in your current directory, then
you get 32 paths! This pays off huge for things like copying. The
command

cp *.pdf foo/

will copy every pdf in the current directory to the sub-directory foo.
Wildcards are so powerful that you should be careful using them at
first. They can cause commands to do way more than you expected
if you and the computer don’t interpret the pattern in the same way.
Using wildcards along with rm is a really good way to accidentally
erase some files.

Brace expansion, like wildcard expansion, expands to everything
that matches the pattern. The pattern {lab1,lab2}.cpp will expand to
lab1.cpp lab2.cpp. Combine this with wildcards and you can create
some pretty powerful patterns. For example, *.{cpp,h} expands to all
the cpp and h files in the current directory. This kind of pattern is
likely to pop up a lot when we start C++ programming as these two
file types are used in C++ programs.

Parameter expansion and command expansion are, given our
background, significant CLI tools. They let us recapture the functional

comp 161 lecture notes 03 working with the shell 10

input and output we know from Racket. In Racket we’d write things like
(f (g5)) and expect the value output by (g5) to be fed for f as an
input. To get the same thing in bash, we use command expansion:

f $(g 5)

Now stop and think, How is that different than this command?

g 5 | f

The bash command f $(g5) is not a redirection. It takes the value
of the output of g5 and uses it as the input to f . On the other hand,
g5| f takes what g5 writes to stdout and instead causes f to read it
from stdin. The result in this case might be the exact same thing,
but the first route seemingly avoids notions of I/O and instead uses
functional computing.

Basic parameter expansion let’s us easily substitute the value of a
variable for its name. Put another way, it’s an accessor shortcut. Try
this:

echo PWD

What you should see is PWD. You might have expected to see the
same thing as the command pwd, why? In Racket, feeding a variable
to a function meant “use the value associated with name”. The PWD
variable is a different beast and so we have to be more specific. Try
this:

echo $PWD

Now, we see the same thing as pwd because the parameter expan-
sion invoked by $ effectively retrieves the value associated with the
variable PWD.

All of these expansions let you recapture some of the functional
feel of programming in Racket. The alternative is to chain together
effects through redirects.33. More practically, they’re the gateway to 33 This is subtle and very very impor-

tant. Give it serious thoughtsome serious commandline-fu.

Big Picture

These notes merit careful study. The interaction of commands with
state variables and I/O illustrate fundamental principles in com-
puting, principles that we’ll study and utilize when we program in
C++. One perspective of the procedural, imperative style that we’ll be
using in C++ is that it’s largely about interactions with state. You’ll
quickly see this play out on both the micro and macro level.

	Essentials For This Class
	Paths
	Racket Functions and CLI commands
	Big Picture

