COMP161
Lab 4 & Homework 4

Spring 2017

This week you'll be building basic interfaces for the functions you
developed last week. You're welcome to use the instructor’s solutions
to last week’s lab and homework as a basis for this week’s assignments
if you need or want to.

The Programs

During lab you’ll get started on building the following programs:

1. A program that provides a basic CLI interface to the charge pay-
back function from lab/hwk 3.
The CLI program takes a single command line argument, the
charge amount. The executable should be named payback. When
the user enters a negative charge amount, the program should
print an error message and close without reporting a payback

amount. Otherwise, the program should behave like this example:

$> ./payback 250.0
$250.0 will payback $0.625
$>

2. A program that provides a basic REPL interface for some of the
distance conversion functions from lab/hwk 3.
The executable program should be named convert. The program
should prompt the user for three things: the distance to be con-
verted, its units, and the target units. Your program should only
allow the conversion to and from inches, centimeters, and feet.
Units can be specified by a single letter”: i for inches, ¢ for cen-
timeters, and f for feet. If the user enters a negative value for the
distance or a unit not covered by the program, then the program
should write an error message to the standard error and continue
to the next loop without attempting a conversion. Otherwise, the
program should produce descriptive output. A execution of the
program that terminates after a single loop might look like this:

$> ./convert

What would you like to convert: 12 i
What's the target unit: f

121 = 1f

$>

*i.e. a char value

Lab 4

Before you dive into writing the actual implementations for main you
should get the basic boilerplate for each program setup and ready to

go.

1. Stub out two files, one for each main // This means creating two
files, adding the appropriate comments at the top, add the appro-
priate includes, and stubbing out main in each file.

2. Add rules to your Makefile for building each of the executable
programs

When these steps are complete you should be able to build three
executable programs using your Makefile: the gTest program that
runs your tests from last week and two programs that do nothing.
Once again, your goal is to quickly get a working foundation upon
which you can build your program(s).

Once you've got your stubbed out programs ready to go you
should try to work on both programs incrementally. Write code to
do just a little bit, then compile and test that code. Each of these pro-
grams is built up from a collection of discrete tasks. Your job is to
identify those tasks so that you can complete the programs in an 17-
ERATIVE fashion. Rather than write “all” the code then debug “all”
the code, your process should allow you to write some of the code
then debug it and repeat until “all” the code is done.

When the lab period is over, submit your source documents and
your Makefile as labg using handin®.

*> Be certain to clean out your working
directory of non-source files before
submitting

Homework 4
Due by 8am on Monday 2/20

Complete both programs described under lab 4. Submit the source

code and Makefile as hwkyg using handin3. 3 Be certain to clean out your working
directory of non-source files before
submitting

	The Programs
	Lab 4
	Homework 4

