
Comp160
Lab 7
Fall 2018

In Section 3.7 we’re introduced to the virtual pet world which we
finally bring together starting in Section 5.11. In class and in this lab
we’ll be working on bringing this program together along with a few
cool features.

Lab 7

Let’s collect a few features of the virtual cat that are presented in
section 3.7 and 5.11 and add one more feature.

• Draw different cats on even and odd valued locations for a better
animation

• Cat happiness is on a 0 to 100 scale and goes down by 0.1 ev-
ery tick. Pressing the down arrow (petting the cat) will increase
happiness by 1/5 point. Press the up arrow (feeding the cat) will
increase happiness by 1/3 point. Happiness should go no higher
than 100 and no lower than 0. When the happiness is 100 the bar
goes away. When happiness is 0, the game is over.

• The cat moves back and forth across the scene, changing directions
when it reaches the edge of screen.

• Draw a red border around the scene when the cat’s happiness is
below 20.

You’ve been given a starter for this program. This starter includes
complete data definitions with templates for all defined data. This
lab is meant to be an exercise in programming by following the tem-
plate. The new element to this methodology is that we’ll aggressively
design new functions to manage the fields of the structure. Lab is
mostly about setting up this design. We’ll finish the implementation
(possibly in class) once that’s done.

Tock

Design by template thinking suggests that we write three new func-
tions, one that manages the change per tick of each field of the struc-
ture. Let’s call these functions tock-loc, tock-hap, and tock-dir.

1. Write signatures, purpose statements, and headers for each of
these functions. They each must take their respective data type

https://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3azoo1%29
http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3azoo2%29


comp160 lab 7 2

(location, happiness, or direction), but might also need more infor-
mation so think carefully about the signatures. We also need to be
careful when turning the cat around. If the cat is on the right side
of the scene and should turn around, then we should be certain
not to actually advance the cat to the right but instead take a step
to the left. This makes turning around not just changing direction,
but taking a step in the opposite direction that you’re currently
moving.

2. Use the data definitions for location, happiness, and direction as a
guide to write a complete set of tests for each of these functions.

3. Utilize your new helper functions to write the complete definition
for tock-vcat.

4. Now go back and finish the definition for your tock helper func-
tions and debug any issues you encounter. If you lack full test
coverage, then write more tests.

Drawing

Now turn your attention to draw-vcat. Once again, we’ll develop
helpers to manage the vcat field values. For this task you get a bit
more freedom with the helper design. Write any set of helpers you
deem appropriate under the following restrictions: they can only
take as inputs some combination of location/happiness/direction
data and they must return an image. Try to think about how each
individual field gets “drawn” such that your design has a similar feel
to tock where each helper worked out the next location, happiness,
and direction respectively.

5. Write signatures, statements of purpose, and headers for your
helper function design.

6. Complete the definition for draw-vcat using your helpers. The
definition of draw-vcat must not contain a conditional. Here we’re
trying to imagine how the functions all come together before we
get too invested in implementing our design. Keep tweaking your
helper design as needed until you can clearly state, in Racket, how
they all come together in the definition draw-vcat.

7. Develop tests for your helper functions functions. Run and debug
them until all tests pass and the helpers have full test coverage.

Stopping

The starter is not setup to stop the program when happiness reaches
zero. You program should, at this point run and animate the moving



comp160 lab 7 3

cat and the steady decrease of the cat’s happiness.

8. Add a stop-when? event to the big-bang and design the function
for detecting the program termination event. Try to stick to the
“follow the template” design you’ve been doing so far.

Key Events

The key event handler poses an interesting challenge. It takes two
inputs and both have a template. Which should we follow?

9. Provide signature, purpose statements, and headers for the helpers
you would design if keys-vcat first follows the CatKey template.
Hint: If keys-vcat takes care of the CatKey structure, then your
helpers are left to manage the VCat structure. Remember to follow
the VCat template!

10. Provide signature, purpose statements, and headers for the helpers
you would design if keys-vcat first follows the VCat template. Hint:
If keys-vcat takes care of the VCat structure, then your helpers are
left to manage VCat field structure and CatKey structure.

11. In a comment, briefly discuss which design you prefer and why.

12. Finish your preferred design.


