
Comp160
Lab 4
Fall 2018

For this lab we’ll work on a series of functions that would prove useful
for developing a bouncing-ball animation program like you saw on
the first day of class. The emphasis is basic function development with
regular, incremental testing.

Lab 4

Just like last week, each function you define should include with it a
brief description of the function’s purpose as well as several concrete
examples. When you use conditionals, work on developing examples
that cover all the cases of the conditional. DrRacket will show you
cases not covered if you run all your examples at once. Code that is
not used is highlighted after you run examples. To make running
examples as tests a bit easier, try adopting the following style1: 1 If you’re feeling pretty good about

functions then feel free to work on
formal testing as seen in Section 3.5 of
the text.

1

2 ; Exercise 192

3

4 ; This function computes ... given ...

5 (define (foo x y z)

6 ...)

7

8 ; (foo 1 2 3) ; --> 14

9 ; (foo 4 5 6) ; --> 21

Notice the expected answer is commented out within the line such
that delete the first semicolon leaves the function call uncommented
but the expected value still a comment. You can now uncomment
your examples for the function you’re working on and easily run
them to see if your on track. Alternatively, run the expression in the
interactions window and compare the result to what you expected.
Either way, the goal here is to get some confirmation from the com-
puter that your function is working as expected.

The Bouncy Ball Program

Imagine a program that animates a ball bouncing freely around a
rectangular space. We’ll use x and y to represent the ball’s current lo-
cation in the space2 and dx and dy to represent the distance it moves 2 Remember (0,0) is the upper left hand

cornerin the x and y directions, respectively, in a single frame of animation.



comp160 lab 4 2

See it Move

To the computer the current state of the ball is simply the value of
the four variables: x, y, dx, and dy. We tend to think in terms of the
picture implied by those four values. So having a way to visualize the
current location of the ball will help us as we develop this program.
Lets start by working out some code to do just that.

1. Write a function named draw-ball that takes x and y, the location of
the ball, and computes an image with a ball at those coordinates
within the space. The space should be 500 pixels wide and 300

pixels tall. The ball should have a diameter of 50.

Now that we can literally see what’s happening, let’s look at how
the ball moves. A no-frills first crack at getting the ball movement
functions working might look like this:

1 ;; compute the next x coordinate for the ball

2 (define (ball-next-x x dx)

3 (+ x dx))

4

5 ;; compute the next y coordinate for the ball

6 (define (ball-next-y y dy)

7 (+ y dy))

Copy the definitions for ball-next-x and ball-next-y to your defini-
tions window. We know from draw-ball that the location of the ball
is always comprised of positive numbers. Movement, however, must
be either positive or negative in order for the ball to move freely in
the allotted space. Just like we think of the location of the ball as the
pair (x,y), we think of the movement of the ball as the pair (dx,dy).
The sign of the variables dx and dy determines the general direction
of the ball. There are four combinations of signs for dx and dy: both
positive, both negative, positive dx with negative dy, and negative
dx with positive dy. Let’s make sure we understand how to interpret
these combos.

2. Come up with at least one concrete example of a (dx,dy) pair for
each of four sign combinations listed above. In your examples, re-
strict the value of dx and dy to have an absolute value less than 25

but greater than 0. In comments, write out each pair and indicate
which direction the ball is moving.

3. Test your understanding of the directions associated with the
different (dx,dy) pairs by writing up concrete examples that give
us a clear before and after picture of a single step of the animation.
Start with the ball somewhere in the middle of the space. Now
write up a few expression of the following form:



comp160 lab 4 3

1 (draw-ball X Y)

2 (draw-ball (ball-next-x X DX) (ball-next-y Y DY))

In the place of X, DX, Y, and DY in your expressions should be the
literal values you’ve chosen. Running these examples will give you
a before and after image. Run the examples with the stepper as
well to get a feel for how it works. Do as many examples as you
need to in order to feel like you have some basic intuition for how
(x,y) and (dx,dy) translates into ball movement.

We can now draw the ball and, to some extent, move the ball. Let’s
turn our attention to bouncing the ball off a wall.

Bouncing Around the Room

The ball bounces when it makes contact with one of the walls. This
means our program needs a function that tells us if the ball is cur-
rently in contact with the wall. We’ll break this into two problems,
has it hit the left or right walls or has it hit the top or bottom.

4. A ball has “hit the wall” if some part of it is at or beyond the wall
when drawn. Assume that no ball will ever go half way or more
through a wall. For each wall, come up with at least one concrete
(x,y) pair for a ball that has “hit that wall”. Write BSL expressions
to draw each of your examples showing the ball at or beyond the
wall.

5. Write a function named has-hit-x? that when given the balls cur-
rent x location will compute the boolean true if the ball hit the left
or right wall and false otherwise. Because the x location of a ball
is the center of the ball, you’ll need to account for the fact that the
edge of the ball with radius r is at most x ± r.

6. Write a function named has-hit-y? that checks if the ball has hit
the top or bottom of the area.

Now that we can determine when a ball has struck the wall,
we can think about what happens when it bounces. A bounce is a
change in direction. When the ball hits the left or right wall, then the
sign of dx changes, positive to negative or negative to positive. When
it hits the top or bottom wall, then the sign of dy changes as well.

7. Write the function ball-next-dx that computes the dx value for
the next animation frame given the current x and dx values. If no
bounce occurred on the right or left wall, then the dx value stays
as is. If a bounce occurs3 then the sign on the dx should change. 3 the ball hits the wall



comp160 lab 4 4

8. Write the function ball-next-dy that computes the dy value for
the next animation frame given the current y and dy values. If no
bounce occurred on the top or bottom wall, then the dy value stays
as is. If a bounce occurs then the sign on the dy should change.

Drawing Revisited

Wouldn’t it be cool if the ball changed color when it bounced? Let’s
do it! Go back to draw-ball and change the code so that the ball
changes color if it’s going to bounce, i.e. if the ball is currently hitting
the wall, then draw it a different color than usual.

9. Rewrite draw-ball so that the color is different if the ball has in
contact with a wall. Your previously developed concrete examples
for hitting the wall should help you test if your new draw-ball is
fully functioning. If not, then develop additional concrete exam-
ples to be sure your ball is changing color when it should.

Go Faster

DrRacket translates keyboard presses into strings to make it easy for
you to build programs reacting to user input. A complete list of key
event strings can be found in the documentation4. We’ll only concern 4 See Key Events

ourselves with the arrow keys: “up” and “down”.
The up and down arrows should speed up and slow down the

ball. This translates into increasing dx and dy by 1 relative to it’s cur-
rent sign. If it’s negative, then add negative one rather than positive
one. To avoid problems we need to restrict the speed of the ball such
that the absolute values of dx and dy are each strictly greater than
zero but also strictly less than the radius of the ball. If either is at the
current maximum or minimum, then pressing up or down should
have no effect.

10. Write a pair of functions named on-key-dx and on-key-dy that
take a key event string as well as dx and dy, respectively, and
compute the new value of dx/dy given the key pressed. If any key
besides up or down arrow is pressed, then your function should
compute the current value of dx/dy.

You’re Done

If you’ve made it this far then you’re done with the lab. Print your
definitions and hand them in. In class we’ll talk about what’s missing
in order for us to get DrRacket to animate and run this program for
us.

https://docs.racket-lang.org/teachpack/2htdpuniverse.html#%28tech._world._keyevent%29

