
L. Mayfield
Spring 2023

COMP152 Course Competencies
The competencies for this course are given as task statements with associated sub-tasks/learning
objectives. Embedded within the learning are the associated knowledge areas with the desired skill-level.

Competencies
1. Analyze the time and space complexity for a given algorithm, either fully-coded or

in pseudocode, and present your findings in written or oral form to a technical
audience.

a. In the context of specific algorithms, identify the characteristics of data and/or
other conditions or assumptions that lead to different behaviors. [Explain]

b. Explain what is meant by "best", "average", and "worst" case behavior of an
algorithm. [Explain]

c. Perform empirical studies to validate hypotheses about runtime stemming from
mathematical analysis. Run algorithms on various input sizes and compare
performance. [Evaluate]

d. Determine informally the time and space complexity of simple algorithms. [Apply]
e. Understand the formal definition of big O. [Explain]
f. List and contrast standard complexity classes. [Explain]
g. Give examples that illustrate time-space trade-offs of algorithms. [Explain]
h. Use big O notation formally to give asymptotic upper bounds on time and space

complexity of algorithms. [Apply]
i. Perform computations involving modular arithmetic. [Explain]
j. Analyze and explain the behavior of simple problems involving the fundamental

Programming Concepts & programming constructs. [Evaluate]
k. Identify the base case and the general case of a recursively-defined problem.

[Apply]
l. Trace the execution of a variety of code segments and write summaries of their

computations. [Evaluate]

Course competencies derived from and otherwise based on ACM curricular guidelines. By and large, these course competencies
borrow directly from the March 2023 Version Gamma draft of the Computer Science Curricula 2023. For more information see
https://csed.acm.org/cs2023-gamma/

https://csed.acm.org/cs2023-gamma/


L. Mayfield
Spring 2023

2. Given a problem, formulate a design for a computational solution to that problem
using appropriate data structures and algorithms. Present your design to a
technical audience.

a. Discuss factors other than computational efficiency that influence Algorithms &
the choice of algorithms, such as programming time, maintainability, and the use
of application-specific patterns in the input data. [Explain]

b. Use a divide-and-conquer algorithm to solve an appropriate problem. [Apply]
c. Demonstrate the ability to evaluate algorithms, to select from a range of possible

options, to provide justification for that selection, and to implement the algorithm
in a particular context. [Apply, Evaluate]

d. Explain the concept of modeling and the use of abstraction that allows the use of
a machine to solve a problem. [Explain]

e. Analyze simple problem statements to identify relevant information and select
appropriate processing to solve the problem. [Apply]

f. Identify the issues impacting correctness and efficiency of a computation
[Evaluate]

g. Model a variety of real-world problems in computer science using appropriate
forms of [graphs and] trees, such as representing a hierarchical file system.
[Apply]

h. Determine whether a recursive or iterative solution is most appropriate for a
problem. [Apply]

i. Apply the technique of decomposition to break a problem into smaller pieces.
[Apply]

j. Discuss the importance of algorithms in the problem-solving process. [Explain]
k. Discuss how a problem may be solved by multiple algorithms, each with different

properties. [Explain]
l. Describe common applications for each data structure in the topic list. [Explain]
m. Write programs that use each of the following data structures: arrays, strings,

linked lists, stacks, queues, sets, and maps. [Apply]
n. Choose the appropriate data structures for modeling a given problem. [Evaluate]

Course competencies derived from and otherwise based on ACM curricular guidelines. By and large, these course competencies
borrow directly from the March 2023 Version Gamma draft of the Computer Science Curricula 2023. For more information see
https://csed.acm.org/cs2023-gamma/

https://csed.acm.org/cs2023-gamma/


L. Mayfield
Spring 2023

3. Implement, in Python, a sufficiently specified computational solution to a problem
that uses abstract data-types, object-oriented methodology, and standard
algorithms such as search and sort. Use good style and documentation.

a. Have facility mapping pseudocode to implementation, implementing examples of
algorithmic strategies from scratch, and applying them to specific problems.
[Apply]

b. Implement simple search algorithms and explain the differences in their time
complexities. [Apply, Evaluate]

c. Be able to implement common quadratic and O(n log n) sorting algorithms.
[Explain]

d. Demonstrate different traversal methods for trees [and graphs], including pre,
post, and in-order traversal of trees. [Apply]

e. Describe the main concepts of the OO model such as object identity, type
constructors, encapsulation, inheritance, polymorphism, and versioning. [Explain]

f. Compare and contrast the procedural and object-oriented approach. Understand
Programming both as defining a matrix of operations and variants. [Explain]

g. Use subclassing to design simple class hierarchies that allow code to be reused
for distinct subclasses. [Apply]

h. Implement a divide-and-conquer algorithm for solving a problem. [Apply]
i. Implement a coherent abstract data type, with loose coupling between

components and behavior. [Apply]
j. Implement, test, and debug simple recursive functions. [Apply]
k. Discuss the appropriate use of built-in data structures. [Explain]
l. Write programs that use each of the following data structures: arrays, strings,

linked lists, stacks, queues, sets, and maps. [Apply]
m. Compare alternative implementations of data structures with respect to

performance. [Evaluate]
n. Apply consistent documentation and program style standards that contribute to

the readability and maintainability of software.[Apply]
o. Construct models of the design of a simple software system that are appropriate

for the paradigm used to design it. [Apply]
p. Evaluate written technical documentation to detect problems of various kinds.

[Evaluate]

Course competencies derived from and otherwise based on ACM curricular guidelines. By and large, these course competencies
borrow directly from the March 2023 Version Gamma draft of the Computer Science Curricula 2023. For more information see
https://csed.acm.org/cs2023-gamma/

https://csed.acm.org/cs2023-gamma/


L. Mayfield
Spring 2023

4. Analyze and debug a program that uses abstract data types and object-oriented
methods in order to understand performance characteristics, correct for bugs,
and improve, if possible, overall performance.

a. Identify the issues impacting correctness and efficiency of a computation
[Explain]

b. Demonstrate the identification and graceful handling of error conditions. [Apply]
c. Implement, test, and debug simple recursive functions. [Apply]
d. Trace the execution of a variety of code segments and write summaries of their

computations. [Evaluate]
e. Apply a variety of strategies to the testing and debugging of simple programs.

[Apply]
f. Construct and debug programs using the standard libraries available with the

chosen programming language. [Apply]

Dispositions
● Meticulous
● Professional
● Responsible
● Reactive
● Proactive
● Growth-Mindset
● Persistence
● Collaborative
● Creative

Course competencies derived from and otherwise based on ACM curricular guidelines. By and large, these course competencies
borrow directly from the March 2023 Version Gamma draft of the Computer Science Curricula 2023. For more information see
https://csed.acm.org/cs2023-gamma/

https://csed.acm.org/cs2023-gamma/

