
COMP340 - SP22 - Standards

Topic/Skill Standard

Analysis

Correctness Know how to formulate and evaluate a formal problem statement

Use standard combinatorial objects to model problems and reasoning recursively about those objects

Be able to generate and use concrete instances of a problem to explore algorithms and evaluate their
potential correctness

Be able to reason about and analyze potential brute-force solutions to an algorithmic problem

Be able to generate and use a specific counter-example to prove an algorithm is incorrect

Understand the use of inductive proofs for establishing the correctness of an algorithm

Be able to generate and reason about loop-invariants and in particular their role in proving algorithm
correctness

Big-O Know the definitions for and differences between Big-O, Omega, and Theta.

Know how Big-O, Omega, and Theta behave under addition and multiplication and whether it is
transitive. Be able to justify these behaviors by using the formal definitions.

Understand what a dominance relation is and the relations between the eight key functions used in
algorithm analysis.

Be able to relate functions using Big-O, Omega, and Theta

Be able to use Big-O, Omega, and Theta in the analysis of an algorithm.

Understand the use of Big-O, Omega, and Theta for classifying and comparing algorithms in terms of
standard mathematical functions.

Summations Know how to interpret a mathematical expression using summation notation.

Know how to use summation notation to express a sum

Know the Theta classification for arithmetic, geometric, and harmonic series commonly encountered in
algorithm analysis

Be able to prove the correctness of a closed-form solution to a summation using inductive reasoning and
the recursive structure of a sum.

Know how to express and analyze the running time of standard loops using summation notation.

Recurrence
Relations

Know how to interpret a mathematical expression of a recurrence relation.

Be able to express the running time of an algorithm, especially a recursive or divide and conquer
algorithm, using a recurrence relation.

Be able to solve simple recurrence relations by unrolling the recursion

Data
Structures



Topic/Skill Standard

Array
Know how to use array's efficiently using techniques such as the shift-less circular array and exponential
capacity increases

Know how to use amortized time analysis in the context of dynamic arrays and exponential capacity
increases.

Be able to carry out basic array traversals and operations using both loops and recursive functions.

Linked-
Structures

Know how to use linked structures including those with multiple pointers such as doubly-linked lists and
tree nodes

Be able to carry out basic linked-structure operations using both recursive functions and iterative loops.

(Binary)
Trees

Know the vocabulary for talking about binary trees

Be able to do a pre,post, and in-order traversal of a binary tree

Identify and analyze the properties of Complete, Full, and balanced binary trees.

Explain the importance of balanced tree structures and tree structures generally to the design and
analysis of O(f(n)*log n) algorithms.

General
Be able to compare and contrast the strengths and weaknesses of array-based implementations vs
linked-structure implementations in general and when considering specific ADTs and their needs.

Abstract
Data Types

Stack &
Queue

Identify and know how to use the standard interface for each ADT

Know the expected running time of the standard interface functions

Understand ways in which arrays and linked-structures can be used to achieve expected running times
for stack and queue operations

Binary-
Search
Trees

Know what is a BST. Explain how it differs from a standard binary tree.

Understand and explain the importance of balanced BSTs

Dictionaries Know the standard interface for dictionary structures and how to use them effectively.

Compare and contrast dictionary implementations based on arrays, sorted arrays, linked-lists, sorted
linked-lists, BSTs, and hashing.

Be able to implement array, list, and BST based dictionaries.

Heap Know what a min/max heap is, how to use it, and how it differs from standard binary trees and BSTs.

Be able to implement an efficient, complete-tree based heap using using dynamic arrays. Analyze the
performance of that implementation.

Know how to convert an n element array into a heap in O(n) time.

Priority
Queue

Know the standard interface for priority queues and how to use it.



Topic/Skill Standard

Know how to implement a Priority Queue efficiently using a heap

Graphs
Know what a Graph is, the vocabulary used to talk about graphs, and how they compare and relate to
Trees.

Explain the differences between the different flavors of graphs.

Know what a Directed-Acyclic Graph (DAG) is and how it relates to a standard Graph

Be able to represent a graph with an adjacency list or an adjacency matrix

Be able to draw a graph from its adjacency list or matrix

Be able to program with and reason about graphs in their adjacency list/matrix representation.

Be able do and program a Depth-First and Breadth-First traversal of a graph identifying when a vertex is
discovered and processed and when edges are first encountered.

Interpret, explain, and generate a search tree from a DFS or BFS

Identify tree, back, cross, an forward edges in the context of a BFS or DFS search tree

Algorithms

Sorting Be able to explain the design principles for Insertion, Selection, Merge, Heap, and Quicksort.

Be able to implement textbook versions of the sorts listed above.

Be able to analyze the runtime of the sorts listed above

Know, be able to implement, and be able to analyze the partition and merge subroutines for quick and
merge sort.

Be able to address and analyze the runtime impact of randomness on the partition algorithm.

Search Know how to carry out, program, and analyze, a linear search

Know how to carry out, program (loops and recursion), and analyze a binary search

Know how to carry out, program, and analyze an efficient one-sided binary search

Divide and
Conquer

Know how to use the Master Theorem to analyze divide and conquer algorithms. Be able to recognize
when something is not divide and conquer and therefore not subject to the master theorem.

Explain and prove the key cases of the master theorem in terms of the structure of the computational
trees generated by divide and conquer algorithms.

Graphs Be able to use DFS in order to find paths and cycles and to perform a topological sort

Be able to use BFS to find paths and detect connected components.

Compare and Contrast BFS and DFS and identify when one might be more appropriate than the other

Design

Be able to analyze a problem and identify appropriate combinatorial structures and ADTs for the problem

Know when and how to utilize sort and search algorithms in service of the design of an algorithm

Know how to approach a problem with both iteration and recursion in mind.



Topic/Skill Standard

Be able to formulate a general divide and conquer approach to an algorithm

Know when it's appropriate to try a binary-search based approach to a problem and know how to
properly carry out such an approach.

Be able to map algorithms for trees to the basic structure of pre, post, and in-order traversals.

Be able to map algorithms for graphs toa BFS or DFS of the graph

Understand that designing and analyzing efficient algorithms is a process of exploration and discovery.
Hurdles and failures along the way are expected. Problems and potential algorithms must be constantly
probed for weakness and misunderstandings. It requires is a critical mind, perseverance, and practice.


