In this assignment, you will improve your understanding of SMoL using the output from the
Stacker. In every case, you will be shown a trace configuration and asked to perform some
interpretive task. You are welcome to run the Stacker yourself if it will help you construct
answers. Also remember that you can “turn off” the Stacker’s tracing in two ways:

1. Add the #:no-trace option (see more below).
2. Remove the stacker/ prefix to run under the corresponding smol language.

Pro-tip for using # : no-trace: have your top two lines look like this:

#lang stacker/smol/fun
; #:no-trace

That way it’s commented out by default. Any time you want to turn off the tracing, uncomment
that line (just remove the ;), and re-comment when you want tracing back on.

In this assignment, we will have two kinds of activities:
1. Given a configuration, construct a program that could have produced that trace. Ideally
we want an exact match (except, of course, for the random addresses), but get as close as

you can.
2. Given a configuration, determine the value of the program from the trace.

For all programs, assume that the program contained a function pause:
(deffun (pause) 0)

(The programs are written to only use additive arithmetic, so that the result of pause will not

affect the result.) Imagine that the call to pause is about to finish at the point where the
configuration was captured.

Configuration — Program

In this portion, we will show you two Stacker trace configurations. For each one, you should
write a program that, when run, will result in this configuration. The first trace is from

#lang stacker/smol/fun

and the second from

#lang stacker/smol/state

but you can write both in the latter language if you want: the output would be the same.

In each problem, the “Returning 0” and the bottommost environment are from pause. You
should include pause in the programs that you construct.

As you might have guessed, infinitely many programs could have produced each configuration.
Therefore, there is not only one “correct” answer. We do ask that you try to produce a reasonably
minimal solution and avoid flights of fancy. If you really want to get clever, then also include a
simple solution!

(There are two problems, one each on the two successive pages.)

Waiting for a value
in context U
in environment @ 1734

Waiting for a value

in context (+ U x)
in environment @ 1988

Waiting for a value
in context (+ O y)
in environment @ 1255

Returning [§

Waiting for a value

in context #<void> @641
$ro g @J641]

O
in environment @ 1298

Returning 0

mvec P43

Configuration — Value

In this part, we will show you two configurations and ask you to determine what value the
program will produce. Recall that pause is designed to not impact the answer.

In your response, as your school math teachers used to say, “show your work”. Don’t just give us
the answer (a number) but give us a sense of how you arrived at it. You don’t have to be very
verbose, just enough to confirm that you understand the mapping from configurations to
program results.

(There are two problems, one each on the two successive pages.)

Waiting for a value
in context U
in environment @ 1555

Waiting for a value
in context (+ 0 x)
in environment @ 1467

Waiting for a value
in context (+ O (+ y 4))
in environment @ 1668

Waiting for a value
in context (- O (- x 2))
in environment @ 1013

Returning 0

Waiting for a value
in context ™
in environment @ 1268

Waiting for a value
in context (+ U x)
in environment @ 1964

Waiting for a value
in context (+ 4 0O vy)
in environment @ 1092

Waiting for a value
in context (+ O x)
in environment @ 1838

Returning [

