COMP161
Project 1
Tic-Tac-Toe
Spring 2019

For your first project you'll be writing a simple C++ CLI implementa-
tion of the game tic-tac-toe. The final product will allow for player-vs-
player or player-vs-computer games. You will be asked to develop this
program in a bottom-up fashion by beginning with key elements of the
game’s procedure library and working towards a running prototype
only in the later versions of the program.

Program Overview

If you do not know how to play tic-tac-toe, ask just about anyone you
know and they can probably teach you the game. Below you'll find
some discussion about representing the game board and identifying
spots on the board as well as a description of the versioning you
should following in this program.

Board as 1D or 2D vector

You get to choose one of two representations of the board. The first

is a flat, 1D vector of size g9 and the second is a 3x3 2D vector, a.k.a.

a vector of vectors. We'll discuss the each approach in class but the
basic observation is that there are 9 spaces on a tic-tac-toe board and
so long as we can translate a 1D, zero to eight coordinate to a 2D
(row,column) coordinate, and vice versa, then we can choose a flat 1D
vector or a grid-like 2D vector. To keep things uniform, we’ll all use
the following board location number scheme where the top left spot
is 0 and the bottom right spot is 8.

[o|1]2]
[3]4]5]
(6]7]8]

[ofzl2]3]4l5]6]7]8]

Regardless of which way you choose to represent the board, it
ends up being useful to be able to translate between 1D and 2D coor-
dinates and you’ll be required to do so as part of the project.

Figure 1: Tic-tac-toe board with loca-
tions numbered

Figure 2: Tic-tac-toe board as 1D vector



COMP161 PROJECT 1 TIC-TAC-TOE

Version o

The first version of your program is about developing procedures
that visualize the game state, test for win/loss conditions, and find
the locations of all the allowable moves. There is no running program
here, just some very necessary functionality for tic-tac-toe.

* A procedure, or suite of procedures, to determine if the game has
been won and by whom.

® Three procedures for converting board positions between 1D and
2D coordinates: 2D to 1D, 1D to 2D row coordinate, and 1D to 2D
column coordinate.

¢ A procedure that produces a vector containing the 1D coordinates
for all the currently allowable moves.

¢ A procedure that writes a visual representation of the board to the
terminal.

Version 1

This version of the program adds procedures for getting and han-
dling a move from a player or, in the case of a random move, an Al.
After completing this version of the program you still only have a
library of helpful procedures, but it’s worth noting that these proce-
dures more or less cover what you need to get the full game moving.

* A procedure, or series of procedures for getting a legal move from
a player.

* A procedure to select a random legal move.

¢ A procedure to apply a given move, specified as a 1D coordinate,
to the board.

Version 2

You will now take the library you've developed and implement a
simple tic-tac-toe program that allows the user to play one game

against an Al opponent. Don’t worry about anything other than

being able to play one complete game against the computer.

¢ A program that allows for a single PvAI game of tic-tac-toe. The
Al goes first and uses the strategy of picking any allowable move
at random. The program terminates as soon as the game is over.

2



COMP161 PROJECT 1 TIC-TAC-TOE

Version 3

The final version of the program adds repeatable plays, the option to
play against other people, and a few other Ul bells and whistles.

* Modify the program so that it begins by asking if you'd like to
play PvP or PvAL When the game is over, announce the winner
and ask the user if they’d like to play again. If they choose to keep
playing, go back to asking what kind of game they want to play.

Optional: Putting the I in Al

Currently, your Al is not very intelligent. It simply picks a possible
move at random rather than attempting to determine which of those
moves is best. Intelligence implies at least some evaluation of move
quality.

We can judge the quality of a move based on how good the board
looks to the player after they’ve made their move. Towards this end
we can define a simple function that assigns a numerical value to a
given board configuration.

e 200 if the Al has won
e 20 for each two in a row the AI has on the board
e 5 for each one in a row the Al has on the board

The AI now does the following: determine all possible moves, deter-
mine the value of the board that results from each of those moves,
and choose the move that results in the board state with the highest
value. Feel free to play around with other ways of evaluating a board
position. If you want to go all out on this then look into the following
algorithms: minimax, alpha-beta pruning, and A*-search.

Grading

Your grade is a function of the overall quality of the code you submit
and how much of the program you completed as measured by the
version requirements listed above. Completeness will determine the
broad, letter-range of your grade while quality determines where you
fall within that range.

Quality Points

To earn full credit for code quality you must use good programming
style, have well written documentation, and a full set of tests for
all procedures. Further more, your design should be making good

3



COMP161 PROJECT 1 TIC-TAC-TOE

use of helper procedures in order to manage the complexity of the
program. Cramming everything into a small number of procedures

is likely to cause you to lose some points on design quality but you
can earn a good amount of points if the procedures you have are well
documented and tested using gTest. On the other hand, you can do
an excellent job breaking things down into basic procedures but lose
points to sparse or missing documentation and tests. Finally, you
should make some effort at producing a decent user experience. You
don’t need to go overboard one visual elements, but the experience of
playing your game should not be unpleasant or difficult to figure out.

Correctness and Completeness Points

Your overall grade range is based on the highest version number you
complete as listed below. For example if you complete all of the fea-
tures listed in version o and 1 then you can expect to get something
in the C range based on the quality and correctness of what you've
submitted. In the event that you also completed some of the features
in version 2, then it is possible you'll get as high as a B- so long as
your code is of sufficient quality and correctly implements all the
required features. However, you cannot boost your grade by means
of cherry picking bits and pieces of each version. Having only parts
of version o, 1, and two complete will be treated more or less like an
incomplete version o project. Finally, above all else, be certain that
your code compiles without error. Code that does not compile will
not receive a passing grade.

Version Grade

(0}

> % N O

1
2
3

4



Timeline

When it’s due, submit your code as assignment projz using handin.

Date
3/27
4/3
4/9

Assignment Due

Begin Project in Lab
Work time in Lab
Project Due

COMP161 PROJECT 1 TIC-TAC-TOE 5

Table 1: Project Due Dates



	Program Overview
	Grading
	Timeline

