
COMP161
Lab 6 & Homework 6
Spring 2019

For this lab you’ll work on writing a mutator procedure. It’s a problem
we’ve looked at before. You’ll be enhancing it a bit and approaching it
from the perspective of state mutation. For homework you’ll work on
an output procedure. Both topics are covered in lecture notes 9.

Lab 6

An n-gram letter frequency analysis counts the frequency of n
letter sequences in a string. These statistics can then be used for
several purposes in natural language processing and cryptogra-
phy. A common technique to handle the begging and end of a
document is to pad both with (n − 1) special characters such that
the first n gram is the first letter of the text preceded by (n − 1)
special characters and the last n gram is the last character fol-
lowed by (n − 1) special characters. It is usually important that the
padding character is unique and doesn’t occur elsewhere in the
text as it signifies the beginning and end of the document.

Your task is to design and develop a general purpose string

mutator called add_padding that can be used for this purpose.
The procedure should take a string str, a positive integer pad_size,
and a character pad_char. If the character pad_char doesn’t occur
in str, then it should modify str by adding pad_size occurrences of
pad_char to both the beginning and end of the string. If pad_char
does occur in str, then it should leave str unchanged.

In order to complete this procedure, you’ll need to make use of
the fill constructor1 for the std::string class as well as the std::string 1 http://www.cplusplus.com/

reference/string/string/string/method find2. So, a secondary objective of this lab is to give you prac-
2 http://www.cplusplus.com/

reference/string/string/find/tice reading a language reference. As always, your procedure should
be fully documented3 and have a sufficient set of tests in addition to 3 now that we’re writing procedures for

effect, don’t forget post conditionsbe fully defined. At the end of lab, submit a compilable set of code as
lab6 using the handin command.

http://www.cplusplus.com/reference/string/string/string/
http://www.cplusplus.com/reference/string/string/string/
http://www.cplusplus.com/reference/string/string/find/
http://www.cplusplus.com/reference/string/string/find/


comp161 lab 6 & homework 6 2

Homework 6

Due Wednesday 2/27

Printing data in an organized, tabular form is a common output
task. Tabular output presents data aligned into columns and rows
and typically prints each value in a specific way. For this problem
you are to write an output procedure called styleRowOut that pro-
duces one row of a table of beer style statistics like those you see here:

The first row you see is the header; your procedure does not print
that row. The remaining rows are the data rows and are examples4 4 free test cases!

of the kind of output your procedure should produce. Each row
contains a string, the name, and five doubles.

• The OG and FG5 are measurements of beer taken before and after 5 Original and Final Gravity

fermentation. They’re always reported to three decimal places and
the values fall between 1.0 and 2.0.

• The ABV6 measures the strength of the beer. It is always reported 6 Alcohol by Volume

to one decimal place. The ABV tends to fall between be between 3

and 15.

• The IBU7 measures the hop character and is reported with zero 7 International Bittering Units

decimal places. The IBUs of a beer tend to be between 10 and 120.

• The SRM8 is a measure of beer color and is reported with zero 8 Standard Reference Measure

decimal places. The SRM of a beer is typically between 5 and 50.

The iomanip9 provides a few key manipulators for controlling how 9 http://www.cplusplus.com/

reference/iomanip/output streams print values. For this lab we’re concerned with the
way in which a double is printed and the general width, i.e. number
of characters, values take up in genreal. The std::setprecision10 manip- 10 http://www.cplusplus.com/

reference/iomanip/setprecision/ulator lets your determine the number of decimal places printed. Be
aware that this causes rounding off of values. If you want to guar-
antee that the precision is exactly the number of places printed,
i.e. if you want trailing zeros, then you need to use std::fixed11 from 11 http://www.cplusplus.com/

reference/ios/fixed/iostream. So, by combining std::precision and std::fixed we can make
something like 1.1 print like 1.100.

The std::setw 12 manipulator lets you specify the width of a printed 12 http://www.cplusplus.com/

reference/iomanip/setw/value and is crucial for building a column in a table. Every column
entry should print to the same number of characters. If you set the

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/iomanip/setprecision/
http://www.cplusplus.com/reference/iomanip/setprecision/
http://www.cplusplus.com/reference/ios/fixed/
http://www.cplusplus.com/reference/ios/fixed/
http://www.cplusplus.com/reference/iomanip/setw/
http://www.cplusplus.com/reference/iomanip/setw/


comp161 lab 6 & homework 6 3

printing width to 10, then print 2.3 the stream will take care of
padding the output with 7 spaces to fill the required 10 character
width. By default, padding done to fill the width is done on the left.
This results in right justified data. You can change this to left justi-
fication by using std::left13. There’s also a std::right and a std::internal 13 http://www.cplusplus.com/

reference/ios/left/that lets you specify an arbitrary fill point.
To build our table we want print values left-justified with the

following widths:

• Names should be printed 20 wide.

• All the numerical values should be printed 8 wide.

It should be noted that the example table shown above is not neces-
sarily printed with these width values. It was generated by Mathe-
matica and not a C++ program.

http://www.cplusplus.com/reference/ios/left/
http://www.cplusplus.com/reference/ios/left/

	Lab 6
	Homework 6

