
COMP161
Lab 2 & Homework 2
Spring 2019

These assignments are designed to get you working with the GNU
GCC, C++ compiler g++, the build scripting program make, and some
features of Emacs that make programming easier. For homework,
you’ll be directed to “break” the code in order to see how the compiler
reacts to some common mistakes.

Overview

You should give Lecture Notes 5 at least a quick scan prior to starting
this lab as they pretty much layout everything you need to do. The
code you’ll be working with for these assignments can be found at
/home/comp161/sp19/ on the server and on the course website. The
four files are zipped together as lab2.zip.

Lab 2

In lab you’re pretty much working through the lecture notes to get
practice building and running programs and tests. A few times you’ll
be asked to redirect the output of some commands to a text file. This
is meant to give you practice with some more advanced CLI features
and to give me evidence of your success and progress.

Now, carry out the following tasks1: 1 Details about each task can be found
in Lecture Notes 5

1. Copy the file lab2.zip from /home/comp161/sp19 to your home direc-
tory. Use the command unzip to extract the files.2. 2 use man unzip to get the manual for

unzip and see if you can figure out how
to use it from that2. Use g++ to compile each of the cpp files into objects files.

3. Use g++ to build the main program executable. Name it fact_main.

4. Use g++ to build the test executable. Name it fact_tests.

5. Run the main program a few times with a few different arguments
in order to get comfortable running executables that you yourself
built.

6. Run the test executable with the option to list all the tests. Use the
CLI to redirect this output to a file called lab2-testOutput.txt.

7. Run each of the test cases individually. Use the CLI to append the
output to the test output file you started in the previous task.

8. Run all of the individual tests from one of the cases that has mul-
tiple tests. Again, use the CLI to append the output to your test
output file.



comp161 lab 2 & homework 2 2

9. Write a Makefile for this program. Write it such that running the
command make without arguments will build both the main and
test executables. Do not copy and paste text from the notes. Type
it out by hand to get practice working with Emacs. You might
consider doing one rule at a time and testing it after each new rule
is added.

10. Clean out all the objects and executables using make. Then use
make to compile only the test executable. Redirect the output of
a successful, clean make of the test executable to a file called lab2-
builds.txt.3. 3 By clean I mean starting with only

source code files and no previously
compiled objects or executables11. Clean your build files up again and do a clean build of just the

main executable. Use the CLI to append the output of this make
command to your build file started in the previous step.

12. Do a clean build of the make all rule and append that output to
the build file.

You should now have two text files containing redirected CLI
output: one from running Google Unit Tests and the other from
make. You should also have a Makefile that you created from scratch.
Submit these three files and only these three files using handin. If you
submit the C++ code, executables, objects, or anything not one of
these files, then you’ll lose points for the lab. The assignment is lab2.
To submit more then one file with handin you simply need to group
those files in a single directory and submit that directory. The handin
output should report which exact files were submitted.

Homework 2

Due by class Monday 1/28

In this homework you’ll be introducing errors to the code and
seeing how the compiler reacts. While doing this, you should practice
building code from within Emacs.4. For each error you introduce you 4 I highly recommend you build code

within Emacs at least once while in lab
so you can get help if you need it

need to carefully examine the compiler’s error report and write a
brief statement, a few sentences, of how it seems to relate to the error
as you see it. Write this report up in Emacs5 and submit it, and only 5 Don’t forget your name!

it, via handin as assignment hwk2. Some error messages are better
than others. When they seem to be totally unrelated, take some time
to really examine and analyze them for some clue about the error.
Pay attention to the lines of code associated with each error as well.

Here are the errors you should introduce:

1. No main procedure



comp161 lab 2 & homework 2 3

Compile an executable without a main procedure. There are two
easy ways to do this by modifying your Makefile instead of the
code itself. If you remove the -lgtest_main from the rule for the test
executable, then you’ll be missing the Google provided main. If
you remove the lab2_main.o from the compile command for the
main executable, then you’re missing the program main. I suggest
you try them both.

2. Missing Semi-colon

In factorial.cpp, remove the semi-colon at the end of line 17. Any
line ending in a semi-colon is a C++ statement. This particular
statement instructs the computer to call another function do some
multiplication, and then return a result to the site where this func-
tion was called from. You might try removing other semi-colons to
see if the different statements induce different errors when they’re
missing their terminating semi-colon.

3. Missing namespace specifier

The statement on line 18 of lab2_main.cpp directs the computer
to look in the std namespace for names it doesn’t known. This
allows us to more easily call several functions from standard C++
libraries. Remove the code on line 18.

4. Missing #include statement

In lab2_main.cpp, remove lines 10–13, each individually. Each line
includes a different library. By doing each line individually you
can see similarities and differences between forgetting to include
different libraries.

5. Choose your own adventure

Come up with at least two more errors to introduce. You might
try searching around the web for common C++ syntax mistakes
and see if you can introduce one of those. Coming from Racket,
an obvious thing you could do are missing parenthesis and curly
braces. Just like in Racket, C++ makes use of matching opening
and closing parenthesis and brackets quite often. When you type a
closing bracket/parenthesis in Emacs, it will briefly highlight the
opener it is associated with. If you’re not sure what brackets go
with what, then delete and retype a closer to see what opener it
goes with. Try removing an open and a closer. Try different situ-
ations; not all brackets are created equal. Some brackets surround
definitions where others are used to block statements together to
make another statement within a definition.



comp161 lab 2 & homework 2 4

C++ Comments

When introducing errors, I recommend that you comment out code
rather than delete it. So when I say remove, I really mean comment
out. For more involved errors, it’ll be easier to remember to remove
comment markers that you introduced than to re-type code that you
didn’t write and have never written!

There are two ways to comment things out in C++: // and / ∗
∗/. The double forward slash will comment out everything after it
until the end of the line; it’s a single line comment. The matching
/∗ and ∗/ create a block comment. Everything between them is
commented out. You should see examples of both comment styles in
the code.

Emacs and plain text

If you’re writing plain text with emacs then there are two things you
need to be aware of: controlling the width of the text and spell-check.
If your text is too wide, spans too many columns, then it will print
funny. This is easily avoidable using fill commands6. If you’re like 6 http://www.gnu.org/software/

emacs/manual/html_node/emacs/

Fill-Commands.html
me, you’re too reliant on spell-check. Emacs integrates with a linux-
based spell checker and provides some convenient commands to
check your spelling7. Keep your document to a width of 60 characters and 7 http://www.gnu.org/software/emacs/

manual/html_node/emacs/Spelling.

html
use spell-check.

http://www.gnu.org/software/emacs/manual/html_node/emacs/Fill-Commands.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Fill-Commands.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Fill-Commands.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling.html

	Overview

