COMP161 - Lab 10

Spring 2019

Abstract

For these problems you should simply cram each loop into a single main procedures. No libraries. No
tests. Just a one file program containing a main.

1. Warm-up: Counting the interval [0, n)

(a) Write a for loop that counts out the interval [0,n) while and computing and finally printing the
sum of all the numbers in that interval.

(b) Write a do-while loop that counts and computes the sum of the interval [0,n). Will this loop work
exactly the same as your for loop for every value of n?

(¢c) Write a while loop that counts backwards through the interval. Have it print the numbers,
separated by spaces, as it counts.

2. In plain English, describe what this loop does. (Hint: Step through it for some small value of n and
see exactly what it does for that n. Then describe that in more general terms. Do not translate the
code verbatim to English.). Check yourself by copying and running the code.

for(int i{0}; i < n; i++){
std::cout << n-1-i;
if(i % 5 ==4){
std::cout << ’\n’;
}
elseq{
std::cout << ’ 7’
}
}
if(n % 5 !'=0){
std::cout << ’\n’;

}

3. Write a validation loop that is suitable for getting a double from the interval (0,1).

4. Write a loop that counts down through the first n multiples of 3 and computes their product. When
it’s done, print that product.

5. Write a loop that prints out every other string in a vector of strings. Print one string per line. Your
loop should continue to work if you change the vector’s size, i.e. don’t hard-code 10 into the loop if
the test vector contains 10 strings.

6. Write a loop that works with a vector of integers and prints out the sum of adjacent, non-overlapping
pairs. Assume the vector contains an even number of integers. For example, if the vector contains
{1,2,3,4,5,6} then it should print 3, then 7, and finally 11 by adding 1 and 2, then 3 and 4, and finally
5 and 6. (Hint: You need to count through the pairs, not the individual vector elements).

