
COMP161
Project 2
Basic Profilers
Spring 2018

For your second project you will write programs to profile the runtime
of of some classic algorithms given random inputs for a variety of
vector sizes.

A Basic Average-Case Profiler

You are to setup your profilers as simple command-line scripts that
work from two command-line arguments. The first is the number of
times the procedure being profiled should be run, i.e. the number of
experiments, and the second is the size of the vector. For example, if
the program executable for profiling std::find is named profFind, then
you’d run profFind 10 10000 at the command-line to profile std::find
on 10 randomly generated input vectors of size 10000.

The programs should report the size of the vector and time taken
in milliseconds for each execution writing not more than five exe-
cution times per line and placing a space between each time. Addi-
tionally, the minimum, average, and maximum time taken should
be given on a line of its own after all the individual times have been
reported. For example, say you had a vector of size 1000, ran std::find
seven times, and they took 3, 5, 4, 3, 4, 7, and 9 milliseconds respec-
tively1 for a minimum of 3, an average of 5, and a maximum of 9

1 these times are made up

milliseconds. Then your program would print:

1000

3 5 9

3 5 4 3 4

7 9

The basic output template is size on one line followed by the min-
imum, average, and maximum time on one line, and finally the indi-
vidual times written five per line.

The Procedures

From the C++ standard library2, you’ll be profiling: std::find, std::sort, 2 specifically the algorithm library

and std::binary_search. These represent well optimized versions of
classic algorithms and give you a real feel for the linear, linearithmic,
and logarithmic classes, respectively. From the instructor’s searchsort

comp161 project 2 basic profilers 2

library you’ll be profiling searchsort::insertsort, searchsort::selectsort,
searchsort::mergesort, and searchsort::quicksort. These represent text-
book presentations of classic algorithms and give you some points of
comparison within the quadratic and linearithmic complexity classes.

The true average case for these procedures is determined from
some statistical knowledge of what kind of data they can expect to
work with. We’ll simply look at cases that are not guaranteed to be
the worst or best case. For the sorts, this occurs when the input is
random, unsorted data. For the two searches this occurs when the
item you’re looking for is in the middle of the vector somewhere3. 3 This can actually trigger Binary

Search’s best case, but we’ll run with it
for this project.

Given that the sorts are mutators, it is important that every indi-
vidual sort start with a freshly generated vector. Resorting an already
sorted vector can induce best or worst case behavior depending on
the sort. For the searches you’ll need to use the C++ random library to
generate a random integer in the middle range of indexes for the vec-
tor. For example, if our vector has a size of n, then we want a random
number drawn from the uniform distribution of [n

4 , 3n
4]. That number

will be the index of the number for which we’ll search. For example,
if you randomly generate the number 17, then you should search for
the number currently at index 17 in your vector. Each search should
pick a new number to search for. The vector itself can be reused but
the index containing the search key must be regenerated.

Pre-Project Lab: Generating Test Data

In /home/com161/sp18 you’ll find the file labp2-stater.zip. It contains all
the design work for the following procedures:

• fill_rand
A procedure for filling a vector with a random permutation of
sequential integers.

• fill_sorted
A procedure for filling vector with integers in greatest to least
order.

In your pre-project lab assignment you’ll implement these two proce-
dures.

These mutator procedures form the backbone of your project as
they enable you to quickly generate new inputs for the procedures
you’ll be profiling. The procedure fill_sorted can be implemented
with basic iteration. The procedure fill_rand requires randomness
and therefore follows the design of randomized procedures as seen in
lecture notes 18.

To implement fill_rand you should use fill_sorted to get a vector
full of the right sequence of numbers and then use a Fisher-Yates

comp161 project 2 basic profilers 3

shuffle to randomize the order. This linear time algorithm works by
traversing the vector from the greatest index to the least index while
randomly selection a position prior to the current traversal index and
swapping the value at that position with the current position. Fisher-
Yates is already implemented as std::shuffle, but it’s a simple enough
randomized, iterative process that it makes for a good example to
learn from so you’ll write your own implementation.

Once the procedures are implemented and the tests provided in
the starter pass, use the program written in labp2_main to write a unit
test for a fill_rand with a vector size greater than 5. The program
takes two positive integers at the command line. It will give you the
exact sequence of numbers your shuffle will get from a given random
number generator seed value. The second input is the seed value
and the first is, in terms of shuffling, the vector size. So passing the
program 15 and 2, gives you the random values your shuffle will be
given for a seed value of 2 and a vector of size 15. From here you can
predict exactly what your shuffle will do as you know exactly which
elements will be swapped on each iteration of the shuffle.

Submit your labp2 code as assignment labp2. In the event you do
not complete this lab, a working copy of the library will be provided
to you in order for you to complete the project.

Gather Data

Once your profiling programs work, you should use them to gather
some basic data about the seven procedures in question and their
associated algorithms. That data should be written to a file using
command-line redirects such that each procedure has it’s own file for
a grand total of seven files worth of data.4 4 This means you should append each

different run of your program to the
procedure’s data file.

Minimally, you must gather data on 10 executions for each proce-
dure and for each of the following sizes: 100,500,1000,5000,10000,50000,
and 100000. You’re welcome to try more or less executions than 10 as
well as different sizes. Be certain that you understand the perfor-
mance of the procedure before you ramp things up. It is recom-
mended that you work your way from least to most complex proce-
dure.

Logistics

You are expected to use helper procedures and good program design
practice where prudent. Code must be well documented and tested.
You should not be cramming all the code into main. On the other
hand, you do not need to do extreme decomposition into procedures.
Find a happy medium that works for you. In the end, there should

comp161 project 2 basic profilers 4

be a clear sense of design and style. It should be easily read and
followed by a human reader in addition to correctly carrying out the
task at hand.

• Lab 4/26 — Pre-Project lab (labp2) and open work time.

• Wednesday 5/2 Program code and data files submitted via handin as
proj2.

	A Basic Average-Case Profiler
	Gather Data
	Logistics

