
COMP 161 - Lecture Notes - 19 - Some Mathemat-
ica

In these notes we take a quick side-step from C++ to look at the basic
Mathematica we need for Project 2.

Mathematica

Mathematica is a powerful system for all things mathematics1. We’ll 1 https://www.wolfram.com/language/

fast-introduction-for-programmers/be using it to work with execution time data gathered by C++ pro-
grams and written to csv files. The typical way to work with Mathe-
matica is through a notebook. With notebooks we can input one or
more statements from the Wolfram Language2 in a single notebook 2 https://www.wolfram.com/language/

fast-introduction-for-programmers/
cell and then evaluate them right there. Notebooks have the advan-
tages of interactive environments like Dr.Rackets interaction window
and the physicality of source documents.

In the notes that follow I’ll give you statements in Mathematica
that you can and show enter into a Notebook. To evaluate a cell hit
Shift-Enter. You can also Evaluate an entire notebook through the
Evaluate drop-down menu. When you evaluate a cell, the results are
printed within that cell. If you wish to suppress the output of a state-
ment, then end the statement with a semi-colon. I do not recommend
putting all your code in a single cell. Use cells like procedures and
put little logical chunks of code that carry out clear distinct tasks in
a single cell. Just be aware that when you write variables and defini-
tion in one cell and use them in another they must first be evaluated
before their used.

As functions are introduced you should look them up in the Doc-
umentation which is accessible on the web and through the Help
drop-down menu. Any text surrounded by (* and *) is a comment
and will not be evaluated when the cell is evaluated. You’ll soon no-
tice that when calling functions we put arguments in square brackets
rather than the parenthesis we’re used to from C++ and Racket.

Lists

When we read our csv data into a notebook we’ll end up with a
list of lists. You can more or less think of this as a table. Each row
corresponds to a line from the file and the elements of the row are
the values delineated by commas. Task number one is to learn how to
manipulate and work with lists3. 3 https://reference.wolfram.com/

language/guide/ListManipulation.

html
Let’s start by specifying a few lists by hand before we get to the

lists that result from reading our csv files. List literals are written by

https://www.wolfram.com/language/fast-introduction-for-programmers/
https://www.wolfram.com/language/fast-introduction-for-programmers/
https://www.wolfram.com/language/fast-introduction-for-programmers/
https://www.wolfram.com/language/fast-introduction-for-programmers/
https://reference.wolfram.com/language/guide/ListManipulation.html
https://reference.wolfram.com/language/guide/ListManipulation.html
https://reference.wolfram.com/language/guide/ListManipulation.html

comp 161 - lecture notes - 19 - some mathematica 2

comma separated values surrounded by curly braces. Here we define
a few variables with list values.

threes = {3,3,3,3}

alist = {1,2,3,4,5,6,7}

alolon = {{1,2,3},{5,6,7},{8,9,10},{11,12,13}}

We can also use the Table function to construct lists. Here we con-
struct the same lists using Table.

threes = Table[3,{4}]

alist = Table[i,{i,1,7}

alolon = Table[3*(i - 1) + j, {i, 4}, {j, 3}]

We select list items using double square brackets in much the same
way that we select elements from vectors and strings in C++. The big
difference is that the first element of a list is at index 1, not index 0.
When selecting from multi-dimensional lists use commas to separate
dimensional coordinates.

alist[[3]]

alolon[[4,2]]

The really wonderful thing is that we can select more than one ele-
ment at once by passing a list of indexes rather than a single index
and that the order of the data is the order in which we list the in-
dexes.

alist[[{1, 3, 5}]]

alist[[{3, 5, 1}]]

{4, 52, 3, 6}[[Table[2, {10}]]]

We can also use a Span to select a sequence of elements. With spans
we can also specify the step size which in turn lets us do reverse
spans.

blist = Table[20 - i, {i, 1, 20}]

blist[[1 ;; 5]]

blist[[6 ;;]]

blist[[;;10]]

blist[[;;]]

blist[[20 ;; 1 ;; -1]]

blist[[1 ;; 20 ;; 3]]

We’ll be mostly concerned with 2D lists, so we need to be sure we
know how to select rows,

alolon[[2]]

columns,

comp 161 - lecture notes - 19 - some mathematica 3

alolon[[;;,1]]

or parts of rows and columns

alolon[[;;2,{1,3}]]

Making Tables

We’re looking at tabular data sets. Let’s see how we can build a
pretty table from a list of lists. First lets make up a fake, table-like
data set.

mytab = Table[10*i+j,{i,0,20},{j,0,10}]

We might like to view this in an organized table format with
TableForm.

TableForm[mytab]

TableForm has several useful options. Perhaps the most important
are for specifying headers.

mytab,TableForm[mytab, TableHeadings ->

{Table[i, {i, 20}], {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j"}}]

To put captions or labels on graphics, like a table, we use the La-
beled function. I find the default spacing to be too tight and tend to
add some space between the label and the graphic. It’s also conve-
nient to name the finished graphic.

tabview =

Labeled[TableForm[mytab, TableHeadings ->

{Table[i, {i, 20}], {"a", "b", "c", "d", "e", "f", "g", "h", "i",

"j"}}],

"Table 1: Some data showing some relationship",

Spacings -> {Automatic, 2}]

Now that we have pretty table, we probably want to save it as an
image file. The Export procedure makes this super easy.

Export["TimesTable.svg",tabview]

Mathematica will determine the file format based on the extension
you give in the file name. In this case, I’m exporting as Scalable Vec-
tor Graphic4 because it tends to scale up in size better than formats 4 svg https://en.wikipedia.org/wiki/

Scalable_Vector_Graphicslike png or jpg.

Importing csv Data

Importing a csv is as easy as exporting and image.

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

comp 161 - lecture notes - 19 - some mathematica 4

datatab = Import["mydata.csv"]

The Import function determines the file format from the extension.
For csv files, it will read the data as a 2D list where each line is a row.
Here we’re saving the resultant list of lists as the variable datatab.

Basic Statistics

We concerned with tables of data, so let’s make some fake data and
use it to explore some basic statistical gathering and data manip-
ulation. Here we’ll make a 20 row by 10 column table of random
numbers.

randtab = RandomVariate[NormalDistribution[],{20,10}]

The first thing we might like to do is compute some basic statistics
like minimum, maximum, and average. The functions Min and Max
will give you the relevant values for the whole table.

Min[randtab]

Max[randtab]

If we’d like to get the Min/Max by row, then we can use Map. The
Map function applies a function to each element of a list. In this case,
we’ll apply Min/Max to each row.

Map[Min,randtab]

Map[Max,randtab]

To get the Min/Max for a column we can first Transpose the table.
This turns rows into columns and columns into rows. Thus, the Min
of the each row in the transpose is the Min of the columns in the
original.

Map[Min,Transpose[randtab]]

Map[Max,Transpose[randtab]]

The function Mean gives you the average for each column. If you
want row averages, then Transpose is once again your friend.

Mean[randtab]

Mean[Transpose[randtab]]

Plotting Points

Mathematica and do a lot of different visualizations. We’ll focus
solely on plotting points in 2D space with ListPlot and work with
randtab from the previous section. There are three ways to use List-
Plot. If you give it a list of values, then it treats those values as the

comp 161 - lecture notes - 19 - some mathematica 5

y-coordinates and assigns each value’s location as it’s x-coordinate.
You see this when you plot a row of the table.

ListPlot[randtab[[1]]]

Plotting the table causes ListPlot to treat each sub-list5 as a set of 5 row

points for that list’s location in the main list. So row 1 is treated as a
set of points for x equal to 1.

ListPlot[randtab]

When your data is set out incrementally such that list position is the
x-coordinate you want, then this is great. If, however, the position
in the list is not the x-coordinate, then you need ListPlot option 3–
plotting a list of {x, y} pairs. The trick is we’ll have to build this
pairs.

Let’s start with a simple case. Our table has 10 columns. Let’s say
column i corresponds to an x coordinate of 10i rather than just plain
i6. First we need a list of our y-coordinates. 6 row 1 is 10, 2 is 20, and so forth

xs = Table[10*i,{i,10}]

Now all we need to do is “zip” these lists together such that the ith
element of ys matches up with the ith element of the row. There is no
Zip function in Mathematica, but in this case we can use Transpose
yet again. If we build a list with the first row as our x data and the
second as our y data, then the Transpose of that list is our x-y pairs.

Transpose[{xs,randtab[[1]]}]

It might be nice to have a defined function called Zip so that we
can say something like Zip[xs,ys] rather than use Transpose directly.
If anything, it’s a good excuse to see how we write functions in Math-
ematica. So, here’s the definition for Zip!

Zip[xs_,ys_] :=

Transpose[{xs,ys}];

The first line is the function header. We same the name followed by
the parameter list. Each parameter name is followed by an under-
score. The header is separated from the body by :=. The body is
then just the Mathematica expression that carries out the intended
function. We can now zip our row to the y-coordinates using Zip.

points = Zip[xs,randtab[[2]]];

ListPlot[points]

Now another case7. What if each row is a set of points for an x- 7 the case you encounter in project 2

coordinate that is not the row’s index? Our table has 20 rows. Let’s
say the row x-coordinates correspond to the first 20 squares:

comp 161 - lecture notes - 19 - some mathematica 6

rowxs = Table[i^2 , {i,20}]

Now we want to zip row i of our data table with row i of our x-
coordinate table. We can solve this problem with Map. While we’re
at it. Let’s make a function called MakePoints that takes the list of
x-coordinates and the table and maps out the x-coordinates to each
row. Let’s look at the complete definition for MakePoints then pick it
apart.

MakePoints[xs_, ytab_] :=

Map[Zip[Table[xs[[#]], {i, Length[ytab[[#]]]}], ytab[[#]]] &,

Table[i,{i,Length[ytab]}]]

First we note that we’re mapping this Function8, 8 It has to be a function if it satisfies the
Map signature

Zip[Table[xs[[#]], {i, Length[ytab[[#]]]}], ytab[[#]]] &

over the list of ytabs index values.

Table[i,{i,Length[ytab]}]

This is actually reminiscent of our vector loops in C++ as we’re map-
ping over index values rather than the table itself.

The odd part here is the function:

Zip[Table[xs[[#]], {i, Length[ytab[[#]]]}], ytab[[#]]] &

This is what’s often called a lambda expression. It’s an anony-
mous function or a function literal. In Mathematica we can write
these using the & symbol. Everything to the left of & is the function
body. The symbol # is used for the argument. In this case it’s a one
argument function. If you want to do multi-argument functions, then
we just add the argument number after the #9 symbol. We can tell 9 #1 is the first argument, # the second,

and so onfrom the context that the argument of our unnamed function must
be an index number. We use it to select an element from xs and a
row from ytab. Let’s put this together and state in English what we’re
seeing.

The expression

Zip[Table[xs[[#]], {i, Length[ytab[[#]]]}], ytab[[#]]] &

is the function that takes Zips a list of the same length as the #th row
of ytab containing only the #th element of xs with the #th row of ytab.

If you don’t like this shorthand, then you can use the Function
function for specifying anonymous functions.

Function[i, Zip[Table[xs[[i]], {i, Length[ytab[[i]]]}], ytab[[i]]]

comp 161 - lecture notes - 19 - some mathematica 7

Either way, the Map+Anonymous Function combo is extremely pow-
erful. It can save you the trouble of defining and naming every little
function you wish to map on a data set.

Now that we can tag each row with its x-coordinate, we can create
and plot our list of points10. 10 technically list of lists, but Mathemat-

ica doesn’t care
morepoints = MakePoints[Table[i^2,{i,Length[randtab]}],randtab];

ListPlot[morepoints]

ListPlot Spruce Up

The default options for ListPlot are usually pretty good, but there are
a few essentials we need to look at to ensure good plots.

• AxesLabel To add labels to the axes

• PlotRange To specify the min/max y-coordinates displayed

AxisLabel is pretty self-explanatory. PlotRange lets you give exact
values or you can use All or Automatic to let Mathematica figure it
out. Automatic is the default and will on occasion lead to cutting off
some max values. In which case, All is a good alternative. Explicit
values are nice when you need to fit things to a critical range. Here’s
a few examples.

morepoints = MakePoints[Table[i^2,{i,Length[randtab]}],randtab];

ListPlot[morepoints,AxesLabel -> {"Size","Time"},PlotRange -> All]

ListPlot[morepoints,AxesLabel -> {None,"Time"},PlotRange -> {-4,4}]

We can then use the Labeled function to add a caption and Export
to produce an image file.

mypoints =

Labeled[ListPlot[morepoints,AxesLabel -> {"Size","Time"},PlotRange -> All],

"Figure 2: Size and Time...",Spacings -> {Automatic,2}]

Export["datapoints.svg",mypoints]

	Mathematica
	Lists
	Basic Statistics
	Plotting Points

