
COMP 161 - Lecture Notes - 13 - Vectors
March 12, 2017

In these notes we look at the C++ Vector class.

The Vector

If all we ever needed we to manage collections of characters, then
the std::string class would probably suit us just fine. But what if we
need a collection of numbers? What about a collection of strings? Or
a collection of collection of numbers? As soon as the contained type
is anything other than the char type we need a new container type
beside the string. A good general purpose container in C++ is the
vector1 class. 1 http://www.cplusplus.com/

reference/vector/vector/Vectors derive their name from mathematics. At its core, a vector
is a fixed size, indexed collection of instances of a single data type.
The C++ vector library provides us with means of changing the size
of the collection, but this mechanism is not without cost. In what
follows we’ll look at the core functionality of the vector and leave the
remaining functionality for you to explore on your own.

Declaring and Initializing Vectors

Strings always contain characters. Vectors can contain anything and
the contained type must be declared as a template argument.

C++ type Description
std::vector<int> Vector of ints

std::vector<double> Vector of doubles

std::vector<std::string> Vector of strings

std::vector< std::vector<int> > Vector of Vectors of ints

Table 1: Some vector types

Note that spacing out the > symbols in the vector of vectors is
important to avoid confusion with operator>>.

Constructors

The vector class provides several convenient constructors2. Perhaps 2 http://www.cplusplus.com/

reference/vector/vector/vector/the most important attribute we need to establish about a vector
when we declare it is the size. While vectors are dynamic structures
that can grow to fit our data, resizing vectors is not without cost. So,
if we know how much data we’ll be dealing with and can create a

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/vector/vector/vector/
http://www.cplusplus.com/reference/vector/vector/vector/

comp 161 - lecture notes - 13 - vectors 2

vector to fit that data, then we can avoid hidden resize costs. The
most basic constructors let us establish the initialize size.

vector<int> v; // v is empty

vector<double> w(25); // w can hold 25 item

If you want to set the initial value at each location in the vector
to a specific value, you can use a fill constructor similar to the one
provided by the string class.

vector<int> v(25, 5); // v contains 25 instances of 5

vector<char> w(7, ’a’) // w contains 7 instances of ’a’

Finally, we have the expected copy constructor to make a copy of
an existing vector. In this example we’ll use variables just to show
that the constructor inputs need not be literals.

int size(34);

int init_val(-3);

vector<int> v(size,init_val); // v is 34 instances of -3

vector<int> w(v); // w is a copy v

Initializer Lists

The C++11 standard introduced initializer lists for easy initialization
of vectors with arbitrary vales.

vector<int> v{1,2,3,4,5,6,7};

vector<double> w{0.1, 0.2, 0.3, 0.4, 0.5};

vector< vector<int> > s{ {1,2},{3,4},{5,6} };

It is very important to realize that the expression {0, 1, 2, 3, 4, 5} is
not seen as a vector<int> literal by our compiler. It’s just convenient
syntax for specifying the sequence of values needed in this case. So,
when we start looking at tests, we cannot do things like this

vector<int> v{1,2,3,4,5,6,7};

EXPECT_EQ({1,2,3,4,5,6,7}, v);

comp 161 - lecture notes - 13 - vectors 3

Variant Predicates and Size

The most important characteristic of a vector is its size, which tells us
the number of items currently in the vector. Knowing the size let’s us
iterate over vectors because it gives us access to the maximum index
value. You can determine if a vector is empty or not using the empty
class method. The exact size of a vector can be determined though
the use of the size method.

vector<int> v;

EXPECT_TRUE(v.empty());

EXPECT_EQ(0,v.size());

vector<double> w{0.1, 0.2, 0.3, 0.4, 0.5};

EXPECT_FALSE(w.empty());

EXPECT_EQ(5,w.size());

Selectors

The most fundamental action a programmer carries out on a col-
lection of data is to select a single element. Vectors provide the ex-
act same selection mechanism as strings do: operator[] or the class
method at. There are a few other selectors that you’re welcome to ex-
plore, but we’ll stick mainly to operator[]. Let’s expand our previous
tests to utilize the selectors.

vector<int> v;

EXPECT_TRUE(v.empty());

EXPECT_EQ(0,v.size());

vector<double> w{1,2,3,4,5,6,7};

EXPECT_FALSE(w.empty());

EXPECT_EQ(7,w.size());

for(int i(0); i<v.size() ; i++){

EXPECT_EQ(i+1,w[i]);

EXPECT_EQ(i+1,w.at(i);

}

As the above example demonstrates, with the addition of the se-
lectors we can write tests for our vectors that explicitly check the
values at each location or select locations. This is, more or less, the
same logic carried out by operator== as defined by the vector class.

comp 161 - lecture notes - 13 - vectors 4

When prudent, we can use EXPECT_EQ to test for a vector rather
than scanning through the vector ourselves.

vector<int> v{1,2,3,4,5,6,7};

vector<int> w{1,2,3,4,5,6,7};

EXPECT_EQ(v,w);

Mutators

When the selector is used in l-value position3, we can use it to mutate 3 to the left of the assignment operator
=individual elements of the vector.

// v is 125 instances of ’a’

vector<char> v(125,’a’);

// change all the ’a’s to ’A’s

for(int i(0); i<v.size() ; i++){

v[i] = toupper(v[i]);

}

// test for expected change at each location

for(int i(0); i<v.size(); i++){

EXPECT_EQ(’A’,v[i]);

}

// or alternatively.

vector<char> w(125,’A’);

EXPECT_EQ(w,v);

Procedures for Vectors

Like stings, vectors are well suited to iteration because we can easily
traverse over the elements of a vector with a counted loop:

for(unsigned int i{0}; i < v.size() ; i++){

... v[i]...

}

As we start designing procedures for containers we need to be
aware of the underlying costs of passing these containers between
procedures. Pass-by-value means pass a copy. If we’re talking about
a vector of 10,000 elements, then making a copy isn’t something we

comp 161 - lecture notes - 13 - vectors 5

want to outright ignore. However, compilers have gotten really good
a picking up on essential versus non-essential copies for built in
containers like vectors and strings. This means that for the most part,
we can pass-by-value when we need to and trust basic optimization
tasks to our compiler. This also means we should let the compiler
do our copying for us rather than attempt to optimize the process
through some kind of explicit copy.

Let’s design two vector based procedures. The first is a map-style
procedure that applies a function to every element in a vector and
produces a new vector. In this case, we’ll mutate the compiler’s copy
of our original vector to produce the result vector. Our second proce-
dure is a fold-style procedure. For this procedure we really only need
to read data from our input vector. Whenever this is the case, we
should use a mechanism called pass by const reference where
we pass by reference, but tell the compiler not to allow mutation on
the parameter.

Squaring the elements of a Vector

Consider the problem of squaring a collection of doubles. We can
capture this as a function with the following procedure.

/**

* Compute the vector containing the squares of

* all the elements of v.

* @param v a vector of doubles

* @return the squares of v

* @pre none

* @post none

**/

std::vector<double> squareAll(std::vector<double> v);

Testing this procedure is complicated a bit by the fact that our con-
tained type is doubles. This means using EXPECT_EQ to compare
two vectors is dangerous because it means the use of the == oper-
ator to compare double values. This forces us to check each vector
element with EXPECT_DOUBLE_EQ. The exception to this is check-
ing the empty case4. 4 no double, no problem

std::vector<double> mt;

// no double checks. just checking for empty

EXPECT_EQ(mt,ln13::squareAll(mt));

std::vector<double> v{0.1,0.2,0.3,0.4,0.5};

std::vector<double> expected{0.01,0.04,0.09,0.16,0.25};

comp 161 - lecture notes - 13 - vectors 6

std::vector<double> actual{ln13::squareAll(v)};

for(unsigned int i{0}; i < v.size() ; ++i){

EXPECT_DOUBLE_EQ(expected[i],actual[i]);

}

When implementing this function we recognize that we need a
vector of the same size as the input vector. The best practice is to go
ahead and pass by value and use the copied parameter as that vector.
We then modify that vector. We’ve seen this strategy before. From the
accumulation of information perspective, we’re actually accumulating
effect, not data. After step k of the iteration we’ve squared v from
[0, k), i.e. we’ve accumulated k mutation effects in the vector v.

std::vector<double> squareAll(std::vector<double> v){

//modify the v. it’s a copy of the argument

for(unsigned int i{0} ; i < v.size() ; i++){

v[i] = v[i]*v[i];

}

return v;

}

The key here was that we leveraged the compiler generated copy
of our vector rather than make a copy of our own. By working with
the compiler we give it more opportunities for automated program
optimization.

Summing a vector of ints

Let’s look at another example. We want to sum all the integers in
a vector of integers. We could go ahead and proceed as usual with
this problem. In which case we’d pass the vector by value. However,
given a little thought, it becomes clear that we only need to read
data from our input vector. We never need to write. We also do not
need a copy of the vector for any reason. Whenever this is the case,
you should use pass by const reference. This is a pass-by-reference
parameter with the const5 keyword in front of it. By declaring the 5 const

reference parameter constant, we’ve told the compiler to ensure that
the parameter does not undergo mutation. As a reference, we avoid
the copy. As a constant, we ensure the integrity of the now shared
data.

Like pass-by-reference, pass by const reference is carried out by a
small change to the procedure’s signature.

comp 161 - lecture notes - 13 - vectors 7

/**

* sum will return the sum of contents of a vector of ints

* @param v is a vector of ints

* @return the sum of the contents of v

* @pre none

* @post none

*/

int sum(const std::vector<int>& v);

TEST(sum, all){

using namespace std;

vector<int> mt;

EXPECT_EQ(0,sum(mt));

vector<int> notMT{1,2,3,4,5};

EXPECT_EQ(15,sum(notMT));

}

Let’s step through6 through the design of our iterative procedure 6 iterate!

for practice. We can start our implementation with the basic loop
template.

int sum(const std::vector<int>& v){

for(int i(0); i < v.size() ; i++){

... v[i] ...

}

return 0;

}

Now we think about the information that we’re accumulating.
The solution to the problem is a sum of integers, so the accumulator
variable should be an integer. Standard practice is to combine the
accumulator with the current vector element within the loop to get
the next accumulator value and then return the accumulator. Let’s
plug that in.

int sum(const std::vector<int>& v){

comp 161 - lecture notes - 13 - vectors 8

int total{...};

for(int i(0); i < v.size() ; i++){

... total ... v[i] ...

}

return total;

}

We can nail down the initial accumulator value by determining the
solution when the vector is empty, when no iteration occurs. The sum
of nothing is nothing, aka 0.

int sum(const std::vector<int>& v){

int total{0};

for(int i(0); i < v.size() ; i++){

total = ... total ... v[i] ...

}

return total;

}

Now the iterative update. Let’s think about our notMT test case.
If i = 2 and we’re about to execute the loop body, then total is the
accumulated sum so far, i.e. the sum of everything in v with the
index in [0, 2), which for our data is 3. The element v[i] is 3. We want
the update operation to update total to be the sum of everything v
with indexes from [0, 3)/ This is just total + v[2]. Generalizing in
terms of v[i] leads to the loop update operation7 7 which we simplify using + =

int sum(const std::vector<int>& v){

int total{0};

for(int i(0); i < v.size() ; i++){

//total = total + v[i]

total += v[i];

}

return total;

}

	The Vector
	Declaring and Initializing Vectors
	Variant Predicates and Size
	Selectors
	Mutators
	Procedures for Vectors

