
COMP 161
Lecture Notes 10
State and Functions: Putting It All Together
Spring 2016

We now step back and consider a complete program from start to fin-
ish. Along the way we’ll see examples of problems that are succinctly
captured with state and the use of functions vs mutators.

The Program

The program we’ll consider is a simple interactive “game” that func-
tions off a REPL interface. The game begins with the player on the
first of 21 spots. Players choose some integer number of places to
move. Their piece is then moved that many places. If while mov-
ing they go past the first or last spot, then their piece wraps around
to the other side. The game tracks the number of times they wrap
around. That’s it.

The interface for the game should show their piece as an X on a
line as well as display their wrapped score. The use is then prompted
for their move. The game then updates their location and score and
the loop repeats. Figure 1 shows what that would look like for a
short game.

A Problem of State

This problem clearly involves state. At any given time we must know
two things: the player’s location and the number of times they’ve
wrapped around. It makes sense to look at these these things as val-
ues that change over time. Anytime you fix your logic on how a piece
of information changes over time, then you’re looking at a situation
where state is an obvious choice. The information is represented by
a variable and the change is carried out through mutation. Our ex-
perience with mutation and state thus far as been largely confined
to uses state to solve problems. Now we see that some problems are
naturally expressed in terms of state.

At this point can start stubbing out a bit of main to capture what
we know about our program as C++. In doing so we transliterate
high-level, abstract information and design to concrete code. So what
do we know? We know that the game operates with a basic REPL
design and as it loops it works with two state variables. In Figure 2

we see these ideas as C++.

comp 161 lecture notes 10 state and functions: putting it all together 2

|X--------------------|

wrapped: 0

move? 3

|---X-----------------|

wrapped: 0

move? -7

|----------------X----|

wrapped: 1

move? 15

|----------X----------|

wrapped: 2

move? 50

|------------------X--|

wrapped: 4

move ?

Figure 1: A Short, Four move game

int main(int argc, char* argv[]){

// Program State Variables

int cur_loc{0}; // player location

int num_wrap{0}; // number of times player wrapped

while(true){

// ... cur_loc ...

// ... num_wrap ...

}

return 0;

}

Figure 2: A quick, initial sketch for main

comp 161 lecture notes 10 state and functions: putting it all together 3

Wish Lists and Top-Down Design

Now that we have a very basic starting place, we can begin the pro-
cess of generating a wish list of procedures that we can use to com-
plete the problem. Notice we do not start completing the program
by writing statements. This procedural design so we start by find-
ing procedures. Your goal is to think through the problem as procedures.
Why? Procedures are flexible because they are abstract. You can
build any procedure you can imagine. Statements are fixed and con-
strained by the operations and procedures that already exist in the
language and libraries. Resist the urge to write statements and in-
stead imagine procedures.

To find procedures we’ll start by thinking big and work our way
down to details. Everything that happens in this program clearly
happens inside the loop. So we need a sequence of procedures that
carry out the different steps of the loop. This is what is typically
meant by top-down thinking. At the top is the big picture. At the
bottom is the micro-level view. For procedural programs in C++ that
can mean main is at the top and all its helpers1 are at the bottom. For 1 our program libraries

top-down design, our goal is to write main first, then implement the
library needed to complete the main we’ve written.

The other thing we should keep in mind is that the design of this
program already revolves around two state variables. In theory, every
procedure we need interacts with these variables in some way shape
or form. When we’re looking for potential helpers for main, then we
can always look for a function, mutator, input, or output procedure
that works with one or both of our state variables.

So what happens inside the loop? We can break this game down
to three steps:

1. Display the Game State to the user

2. Get the next move from the user

3. Update the game state

Hey! Those could each be procedures. The first is an output proce-
dure and the second is an input procedure. The third step is neither
input nor output. The most natural expression of this third step is
as a mutator that (potentially) modifies both state variables. This is
natural because we’re thinking in terms of state and the fundamental
operation of state is mutation. The word “update” itself implies a
+ = like operation.

We could rethink the update as the assignment (=) of the return
value of a function. This is exactly how you operated in COMP160.
A function is used to compute the new value for the state and basic

comp 161 lecture notes 10 state and functions: putting it all together 4

assignment is then used to update the state. We will definitely look at
this option when we implement step three, but choosing this option
now means we need to break step three into two steps: update the
location and update the wrapped score. Why? Functions can only re-
turn a single value and we need two values. Using a mutator we can
write a procedure that takes two reference parameters and modifies
them both. Alternatively, we could figure out how to use structs in
C++. This would allow us to create a game state struct type that en-
capsulated both the location and the wrapped score. The update
function would then take one of these structs by value and return
one by value. Again, this is exactly how you operated in COMP160.
Rather than add C++ structs to the mix, we’ll work with basic atomic
variables2 and write a double-mutator. 2 one value as opposed to compound

(struct) data with multiple contained
values

At this point we might work out our ideas by actually complet-
ing main with procedures. The idea is to work out the details of the
declaration and documentation of a procedure by working it in con-
text. The power of this technique shouldn’t be under estimated. Just
like writing tests for procedures prior to implementing procedures
lets you think through the expected behavior of the procedure, using
procedures in main3 lets you think through the purpose and signa- 3 or where ever you might call them

ture of a procedure before “officially” documenting and declaring
a procedure. It’s all about establishing the what of your program
specification and implementation before worrying about the how.

We’ll plan to use several namespaces to organize things. All the
procedures will get put in a movegame namespace which will act
as the programs main namespace. We’ll then stick our I/O proce-
dures in a ui namespace which is where we’ll put procedures that
are clearly about the User Interface. Finally, we’ll put the update pro-
cedure in a model namespace as it’s all about interacting with our
computational model of the game state, i.e. those two variables.
We’ll just go ahead and stick all of this in a single library move_lib.h.
We could split ui and model into two libraries, but this program is
simple enough that there isn’t a good reason to do so.

If we stick to basic procedure design4, then we’re likely to end up 4 A procedure is either a function,
a mutator, an input, or an output
procedure

with something like what we see in Figure 3. On the other hand, it
might be nice to combine the user input prompt with the user input
itself. This requires a hybrid I/O procedure. We haven’t done that
but it’s not a big stretch. The basic procedure types aren’t the only
possible options, they’re just the fundamental building blocks. They
are are bottom. When we combine them into multipurpose procedures,
we should be ready to jump right to more primitive helpers. If we
allow ourselves some hybrid-purpose procedures then we end up
with what we see in Figure 4.

Let’s go ahead and declare and document these procedures to

comp 161 lecture notes 10 state and functions: putting it all together 5

int main(int argc, char* argv[]){

// Program State Variables

int cur_loc{0}; // player location

int num_wrap{0}; // number of times player wrapped

while(true){

// write out game state

movegame::ui::displayState(std::cout,cur_loc,num_wrap);

std::cout << ’\n’;

std::cout << "move? : ";

// get the next move

int move{0}; // user’s move

movegame::ui::getMove(std::cin,move);

std::cout << ’\n’;

// update the state

movegame::model::updateState(cur_loc,num_wrap,move);

}

return 0;

}

Figure 3: The complete definition of
main

comp 161 lecture notes 10 state and functions: putting it all together 6

int main(int argc, char* argv[]){

// Program State Variables

int cur_loc{0}; // player location

int num_wrap{0}; // number of times player wrapped

while(true){

// write out game state

movegame::ui::displayState(std::cout,cur_loc,num_wrap);

std::cout << ’\n’;

// get the next move

int move{0}; // user’s move

movegame::ui::getMoveWithPrompt(std::cout,std::cin,move);

std::cout << ’\n’;

// update the state

movegame::model::updateState(cur_loc,num_wrap,move);

}

return 0;

}

Figure 4: The complete definition of
main ver. 2

comp 161 lecture notes 10 state and functions: putting it all together 7

transliterate our ideas to C++. The beginning of our library header is
given in Figures 5 and Figure 6.

// in move_lib.h

namespace movegame{

namespace ui{

/**

* Write the board and number of wraps to the stream out

* @param loc the location of the player

* @param wrap the number of times wrapped

* @return none

* @pre 0<=loc<21 , 0<=wrap

* @post representation of the game state is written to the

* stream out

*/

void displayState(std::ostream& out,

int loc, int wrap);

/**

* Get the number of spaces to move from the player

* @param in the stream where user input can be found

* @param move the variable where the user’s move is stored

* @return none

* @pre none

* @post the user’s move (int number of steps) is read from

* in

*/

void getMove(std::istream& in, int& move);

/**

* Prompt the user for the number of spaces to move and get

that

* number from the player

* @param out the stream where the prompt is written

* @param in the stream where user input can be found

* @param move the variable where the user’s move is stored

* @return none

* @pre none

* @post a prompt is written to out and the user’s move

* (int number of steps) is read from in

*/

void getMoveWithPrompt(std::ostream& out, std::istream& in,

int& move);

} // end ui

} //end movegame

Figure 5: The top-level ui helpers for
main

comp 161 lecture notes 10 state and functions: putting it all together 8

// in move_lib.h

namespace movegame{

namespace model{

/**

* Modify the location state and wrapped score based on the

* most recent move.

* @param curr_loc current player location

* @param num_wrap number of times player has wrapped

* @return none

* @pre 0<= cur_loc < 21. 0= num_wrap.

* @post curr_loc moved move spaces and num_wrap is

* incremented accordingly

*/

void updateState(int& cur_loc, int& num_wrap, int move);

}

} //end movegame

Figure 6: The top-level model helpers
for main

In declaring these steps as procedures and working them in their
desired context we’re forced to work out some program level details.
For starters, we need some local state (move) to manage user-input.
Otherwise, we need to carefully consider what information each
step is dependent upon. Displaying the state requires, well, all the
state. Getting the new move requires that local state and if we want
to prompt with the input we need an ostream. Finally, updating the
state requires the state and the move, but we only need the move
value, not the state itself. We also can think about spacing the differ-
ent output. Should the procedures pad spacing like our example or
should we manage that within main itself.

At this point we can just stub out the procedures and compile and
run our program. It will do nothing, but now we have a complete
design for main that we can work towards. Stubs for the top-level
helpers can be found in Figure 7.

Display the Game State

Before we do anything, let’s write tests for displayState. We shouldn’t
consider how we’ll implement this thing until we’re certain what it
should do. There aren’t really any cases to displayyState procedure
assuming that all the preconditions are met5. For the sake of our 5 which we can manage through updat-

eStateunderstanding, Figure 8 provides a few different test cases.
First things first, we need to recognize that the game’s state, taken

as abstract information, is compound. It’s the combination of the lo-

comp 161 lecture notes 10 state and functions: putting it all together 9

// in move_lib.cpp

void movegame::ui::displayState(std::ostream& out,

int loc, int wrap){

return;

}

void movegame::ui::getMove(std::istream& in, int& move){

return;

}

void movegame::ui::getMoveWithPrompt(std::ostream& out,

std::istream& in,

int& move){

return;

}

void movegame::model::updateState(int& cur_loc, int& num_wrap, int

move){

return;

}

Figure 7: Top-level procedure stubs

cation and the wrapped score. While our physical representation of it
is as two atomic variables, the logic of our design should mirror the
reality of the problem whenever possible. We learned from COMP160

that when faced with compound data, we should deconstruct the
pieces and use helpers. In this case that means two auxiliary proce-
dures, an output procedure for each state variable.

We know we need two procedures, but what should they do and
how will we use them? At this point we have two ways to proceed:
functionally or statefully. The later approach means each helper is
an output procedure and the design goal is two simply decompose
the compound output into two distinct output procedures. We’ll call
them displayLocOnBoard and displayWrap and they output the board
and the wrapped score respectively. As seen in Figure 9, we can
combine them through sequential statements or if you want to
chain them we could use returned references to do a single statement
with nested effects as seen in Figure 10. To leave our options
open we can simply implement them with returned references and
then choose which style we prefer6 In both cases, we might give 6 You can always ignore the returned

reference because the return value isn’t
necessary for producing the desired
effect.

serious consider to the creative use of I/O manipulators std::setw,
std::setfill, and possibly the alignment manipulators to solve this
problem quickly and easily while keeping the logic squarely in the
realm of I/O.

The functional option is less obvious because we solve an output

comp 161 lecture notes 10 state and functions: putting it all together 10

TEST(dispSt,all){

std::string expected{""};

std::ostringstream actual{""};

expected = std::string("|X--------------------|\n");

expected += std::string("wrapped: 0\n");

movegame::ui::displayState(actual,0,0);

EXPECT_EQ(expected,actual.str());

actual.str("");

actual.clear();

expected.clear();

expected = std::string("|-----X---------------|\n");

expected += std::string("wrapped: 4\n");

movegame::ui::displayState(actual,5,4);

EXPECT_EQ(expected,actual.str());

actual.str("");

actual.clear();

expected.clear();

expected = std::string("|--------------------X|\n");

expected += std::string("wrapped: 2\n");

movegame::ui::displayState(actual,20,2);

EXPECT_EQ(expected,actual.str());

actual.str("");

actual.clear();

expected.clear();

}

Figure 8: Tests for displayState

// in move_lib.cpp

void movegame::ui::displayState(std::ostream& out,

int loc, int wrap){

// Sequential Statements called for effect

movegame::ui::displayLocOnBoard(out , loc);

movegame::ui::displayWrap(out , wrap);

return;

}

Figure 9: displayState

comp 161 lecture notes 10 state and functions: putting it all together 11

// in move_lib.cpp

void movegame::ui::displayState(std::ostream& out,

int loc, int wrap){

// Nested Output effects, i.e. effect chaining

movegame::ui::displayWrap(

movegame::ui::displayLocOnBoard(out , loc),

wrap) ;

return;

}

Figure 10: displayState

problem by first doing something other than output. It is appealing
though because the it more clearly separates UI code from model
code. This underlying design goal is known as separation of con-
cerns. The output procedure, which is part of the UI, doesn’t need
to know anything about the game state because the model proce-
dure will be designed to provide an appropriate string for the UI to
output. The role of displayState is now simply to invoke the model
procedures that produce the two strings it needs to output and then
output those strings. We take this design for a spin in Figure 11.

// in move_lib.cpp

void movegame::ui::displayState(std::ostream& out,

int loc, int wrap){

std::string boardStr{ movegame::model::boardString(loc) };

std::string wrapStr{ movegame::model::wrapString(wrap) };

out << boardStr << wrapStr;

return;

}

Figure 11: displayState

We have two design options for displayState’s helper procedures.
The first simply decomposes the output task to mirror the logical
structure of the state it’s meant to output. We can finish that design
up using either sequential statements or chained effects in a single
statement and the helpers displayLocOnBoard and displayWrap can
be designed and implemented to support either option. Our second
design uses the functions boardString and wrapString of the state vari-
ables loc and wrap respectively to produce strings that are then out-
put by displayState. This design illustrates an important technique in

comp 161 lecture notes 10 state and functions: putting it all together 12

program design. When programs are software that is developed and
maintained over time, then the separation afforded by this design
eases the burden of typical software maintenance tasks7. In lab you’ll 7 fixing bugs and adding features

complete the design and implementation of all four of the functions
so that you can then choose one of the displayState implementations
above.

Updating the Game State

Before we do anything, let’s write tests for updateState. We shouldn’t
consider how we’ll implement this thing until we’re certain what it
should do. In writing tests we need to carefully analyze the cases
of this problem. This problem is compounded by the fact that we’re
dealing with a compound state. Naively, this means we might do
a case analysis of each individual state variable. For the location,
there appears to be three cases: the move doesn’t wrap around, it
wraps around the left hand side, it wraps around the right hand side.
Wrapping an happen multiple times so we should first test a single
wrap then test more than one wrap. A quick analysis reveals that
these are in fact the same cases we find for the warp count state. All
told, we have 5 cases and we need to test the effect of each case on
both state variables.

Now that we have a clearer picture of what updateState should do
we can turn our attention to the implementation design. Once again
we’re presented with two familiar options: decompose the mutator
into two single variable mutators or design two functions that com-
pute the next value for updateState to assign to the variables. In both
cases we find that computing the next wrapped value requires the
value of the current location8. This causes a bit of a problem as we 8 but not the state itself!

need to be certain that we use the original location to compute the
new wrapped score. We see the mutator based solution in Figure 13

and the functional solution in Figure 14.
The two implementations of updateState shown here bear careful

consideration as their equivalency is a simple demonstration of how
one can use either functions or state mutation to achieve a computa-
tional solution to a problem. For lab you’ll implement all four of the
helpers listed above.

Getting the User’s next Move

Before we do anything, let’s write tests for getMove and getMoveWith-
Prompt. We shouldn’t consider how we’ll implement this thing until
we’re certain what it should do. If we assume valid user inputs9, 9 a poor assumption but we’ll make it

for nowthen there’s not much in the way of cases here either. As seen in Fig-

comp 161 lecture notes 10 state and functions: putting it all together 13

TEST(udtSt,all){

int loc{0};

int wrap{0};

movegame::model::updateState(loc,wrap,3);

EXPECT_EQ(3,loc);

EXPECT_EQ(0,wrap);

loc = 0;

wrap = 0;

movegame::model::updateState(loc,wrap,-2);

EXPECT_EQ(19,loc);

EXPECT_EQ(1,wrap);

loc = 0;

wrap = 0;

movegame::model::updateState(loc,wrap,25);

EXPECT_EQ(4,loc);

EXPECT_EQ(1,wrap);

loc = 0;

wrap = 0;

movegame::model::updateState(loc,wrap,50);

EXPECT_EQ(8,loc);

EXPECT_EQ(2,wrap);

loc = 0;

wrap = 0;

movegame::model::updateState(loc,wrap,-50);

EXPECT_EQ(13,loc);

EXPECT_EQ(3,wrap);

}

Figure 12: Tests for updateState

void movegame::model::updateState(int& cur_loc, int& num_wrap, int

move){

movegame::model::updateWrap(num_wrap, cur_loc, move);

movegame::model::updateLoc(cur_loc , move);

return;

}

Figure 13: updateState done with two
mutators

comp 161 lecture notes 10 state and functions: putting it all together 14

void movegame::model::updateState(int& cur_loc, int& num_wrap, int

move){

num_wrap = movegame::model::nextWrap(num_wrap, cur_loc, move);

cur_loc = movegame::model::nextLoc(cur_loc , move);

return;

}

Figure 14: updateState done with two
functions

ure 15, the tests for the basic getMove is standard input testing. On
the other hand, the test for getMoveWithPrompt requires us to test the
compound effects of input and output. We see this in Figure 16.

TEST(getmv,all){

std::istringstream in{""};

int mv{0};

in.clear();

in.str("5");

EXPECT_EQ(0,mv);

movegame::ui::getMove(in,mv);

EXPECT_EQ(5,mv);

}

Figure 15: Tests for getMove

TEST(getmvprompt,all){

std::istringstream in{""};

std::ostringstream out{""};

int mv{0};

std::string expected{""};

in.str("5");

expected = "move? ";

movegame::ui::getMoveWithPrompt(out,in,mv);

EXPECT_EQ(5,mv); // the input effect

EXPECT_EQ(expected,out.str()); // the output effect

}

Figure 16: Tests for getMove

If we step back from getMoveWithPrompt for a second, then we
can see an obvious decomposition of the hybrid I/O task into the
output and input task as seen in Figure 17. The input task can be

comp 161 lecture notes 10 state and functions: putting it all together 15

accomplished with getMove so all we need is an output procedure to
display the prompt. Let’s call it movePrompt.

void movegame::ui::getMoveWithPrompt(std::ostream& out,

std::istream& in,

int& move){

movegame::ui::movePrompt(out);

movegame::ui::getMove(in,move);

return;

}

Figure 17: getMoveWithPrompt Basic
design

This procedure is so simple that we might just make it a statement.
Then again, it’s so simple that doing it as a procedure wouldn’t take
much time. The whole thing is done in Figure 18.

// in the library header (within movegame::ui

/**

* Display the getMove prompt on the stream out

* @param out the stream where the prompt is written

* @return none

* @pre none

* @post prompt written to out

*/

void movePrompt(std::ostream& out);

// in the tests

TEST(movePrompt,all){

std::string expected{"move? "};

std::ostringstream actual{""};

movegame::ui::movePrompt(actual);

EXPECT_EQ(expected,actual.str());

}

// in the implementation

void movegame::ui::movePrompt(std::ostream& out){

out << "move? ";

return;

}

Figure 18: movePrompt

comp 161 lecture notes 10 state and functions: putting it all together 16

Big Picture

Two very important design principles came up in our work with this
program.

1. Decomposition of a task/procedure into smaller, more constrained
tasks/procedures of the original task/procedure and recombine
the results.

2. Draw a clear separation between UI and Model tasks using proce-
dures on model state to provide necessary elements of the UI and
using UI procedures to manage basic I/O tasks only.

These principles are not disjoint and can work in tandem to complete
the design for a program. In lab you should play around with all the
variations of this program we discussed in these notes and in class
and then consider other procedural designs that could be used to
complete this program.

The other thing we looked at is our ability to use both functional
thinking and effectful thinking to solve problems. Our core model
update procedure can be implemented using either mutators or func-
tions. The same is true of displayState. What that means is you can
often use functions to implement an effect. We’ve seen in previous
assignments that local mutation of a pass-by-value parameter can be
used to implement a function10. Putting these two together means 10 see the shorten function from lab a

few weeks agothat functions can implement effects and effects can implement func-
tions. As the designer and implementer of a program, you can choose
which suits your needs and requirements best.

	The Program
	A Problem of State
	Wish Lists and Top-Down Design
	Display the Game State
	Updating the Game State
	Getting the User's next Move
	Big Picture

