
COMP 161 - Lecture Notes - 09 - Procedures for
Effect
February 16, 2016

In these notes we re-evaluate our procedure design and development
process to account for procedures whose primary purpose is variable
mutation or I/O effects.

Designing for Effect

We can build entire systems of purely functional principles, but we
would not to do so using C++. Program design with C++ lends it-
self better to a systems approach in which we interact with different
components of a larger computing system. Pure functions like we’ve
been writing are still highly useful in this context. We can imagine
a pure function as something that only involves the CPU and is in-
dependent of other parts of the system. While this independence is
great, it ’s necessary to have some procedures interact with systems
like memory or I/O.

We’ll consider the design of three types of effect-based procedures:

• Variable Mutation

• Output to a Stream

• Input from a Stream

To look at mutation procedures we’ll consider a classic example:
swapping the values of two variables. We’ll then return to our pro-
gram from lecture notes 7 and revise and update it using I/O proce-
dures

Pass-by-Value and Pass-by-Reference

So far we’ve seen variable mutation happen one of two ways: assign-
ment operators and mutator methods. For example,

double a{0.0};

string d{"This is a string"};

a += 5; // aka a = a + 5

EXPECT_DOUBLE_EQ(5.0,a);

d.push_back(’!’);

EXPECT_EQ(string("This is a string!",d);

comp 161 - lecture notes - 09 - procedures for effect 2

The logic of both of these could be expressed as procedures. Let’s
just pretend we have the procedure addN which adds a value to a
variable and push_back which adds a character to the end of a string.
If these procedures existed, then we might write the above examples
as follows:

double a{0.0};

string d{"This is a string"};

addN(a,5.0);

EXPECT_DOUBLE_EQ(5.0,a);

push_back(d, ’!’);

EXPECT_EQ(string("This is a string!",d);

The idea is to pass the variable(s) to be mutated along with any other
needed values to the procedure. The procedure then modifies the
variable(s), leaving them changed from that point forward in the
execution of our program.

There’s something subtle going on here. For this to work we need
to make certain that the mutator function has access to the variable itself.
Normally, when we use a variable name in an expression, like a pro-
cedure call, then the system interprets that as a request for the value
inside of the variable. This isn’t what we want. If it were, then really
our call to addN(a,5.0) would be equivalent to addN(0.0,5.0). What this
all tells us is that we must somehow signal to the compiler that when
a variable is passed to a mutator, it should treat that variable differ-
ently than it does the rest of the time. Namely, the system should
treat the variable in the context of the mutator as an expression of a
location and not an expression of a value.

We’ve actually seen this before. Consider the expression a = a + 5.
To the right of the assignment operator a is an expression of value,
the current contents of the variable a. To the left of the assignment
operator a is an expression of location, the place to store the result of
a+5. This duality of meaning is so fundamental to many program-
ming languages that the two values have formal names. The l-value

is the location value of a variable and the r-value is the content value
of a variable.1. 1 Remember l for left side of assign-

ment, r for right sideNow consider the following function declaration:

int foo(int x);

What we’re really declaring here is that the parameter x is an integer
value. We call this pass-by-value because foo accepts any integer
value as an argument. This can be a literal or the r-value of a variable.
If, instead, we wish to pass foo an integer l-value, the location where

comp 161 - lecture notes - 09 - procedures for effect 3

an integer is stored2, then we need to use pass-by-referece. One 2 i.e. an integer-typed variable

small change in syntax creates this major change in semantics3. 3 syntax = how to write it. semantics =
what it means

int foo(int& x);

The type int& is the integer reference type. Appending the character
& to any type signals to the compiler that you’re concerned with
l-values of that type, references to locations where that type can be
found.

By declaring a procedure parameter as a reference type, you’ve
made a pretty drastic change to how arguments to that parameter are
treated. This is best illustrated through a concrete example.

Swap

A procedure to swap the values stored in two variables is extremely
useful to have around. So much so that it’s already defined in a C++
library4, but we’ll reinvent the wheel a bit here in order to explore 4 http://www.cplusplus.com/

reference/algorithm/swap/mutation procedures and pass-by-reference vs pass-by-value seman-
tics.

The procedure swap is clearly a mutator; it changes the value
stored in not one, but two variables. In order to mutate a variable
within a procedure we must declare that variable parameter as a
reference type. So, if we’re going to swap the values of two double
variables, then we need swap to work on two parameters of type dou-
ble&. What about the return type? Its not at all clear that swap should
return anything, so what we’d like to do is declare that swap return
nothing. This is done with the type void5. 5 void isn’t so much a type as a signal to

the compiler that no value, of any type,
is returnednamespace pbr{

/**

* Swap the value of two double variables

* @param x reference to first double object

* @param y reference to second double object

* @return none

* @pre none

* @post the values in x and y have been swapped

*/

void swap(double& x, double& y);

} //end namespace pbr

To further illustrate why pass-by-value won’t work here, let’s declare
a second version.

http://www.cplusplus.com/reference/algorithm/swap/
http://www.cplusplus.com/reference/algorithm/swap/

comp 161 - lecture notes - 09 - procedures for effect 4

namespace pbv{

/**

* Swap the value of two double variables. This

* version does not work due to pass-by-value semantics

* @param x first double

* @param y second double

* @return none

* @pre none

* @post the values in x and y have been swapped (not really)

*/

void swap(double x, double y);

} //end namespace pbv

We expect the first version to actually change the values of vari-
ables it is given as arguments. We expect the later to do nothing.
Let’s express this as some tests.

TEST(swap,all){

double a{3.141};

double b{2.718};

EXPECT_DOUBLE_EQ(3.141,a);

EXPECT_DOUBLE_EQ(2.718,b);

pbv::swap(a,b); //has no effect

EXPECT_DOUBLE_EQ(3.141,a);

EXPECT_DOUBLE_EQ(2.718,b);

pbr::swap(a,b); //mutates a & b

EXPECT_DOUBLE_EQ(2.718,a);

EXPECT_DOUBLE_EQ(3.141,b);

}

It is important to note that mutation tests must work by doing a
before and after check of the value. When the before value is clearly
an initial value, we can usually leave off the before test. Either way,
the key observation is that the purpose of a mutator is to change the
value in a variable, so our tests must check for just that. We don’t
test against a return value because there is no return value and if
there were it would be secondary to the purpose of the procedure: to

comp 161 - lecture notes - 09 - procedures for effect 5

change the value of variables.
It’s important to point out that the names of the variables we’re

swapping6 do not match those of the parameters to swap7. There’s 6 a and b
7 x and yno reason they should. Names, or identifiers, are, in this case, ab-

stractions over memory addresses. Rather than refer to variables by
address, we refer to them by name. In doing so, we’re free to give a
single address multiple names. When you pass a variable by refer-
ence you are creating an alias of the variable being passed. For the
remainder of the procedure execution, the reference parameter name
is an alias to a variable back in the calling procedure. In our tests, the
x and y in pbr::swap are alias to a and b in the test space. So what hap-
pens when you pass by value? You make copies not alias. The x and y
in pbv::swap are copies of a and b in the test space. This observation
is at the heart of how pass by value and pass by reference actually
work. As we deal with more complicated objects, the copy effect of
pass-by-value can have drastic effects. Imagine that you’re passing
the complete works of Shakespeare as a value. Do you really want to
copy all that text? When this becomes an issue, we’ll address it. For
now, you need to get your head around the copy vs alias nature of
pass by value and pass by reference.

Before we look at the actually logic of swapping, let’s talk about
stubbing out this void return type function. Recall that stubs are
meant to complete a definition that satisfies the signature. Up until
now that’s meant returning a value of the same type as the return
type. Now, there’s no requirement to return a value. So, we use re-
turn simply to terminate the procedure and go back to the program
at the point where the procedure was called.

void swap(double &x, double &y){

return;

}

You can, in fact, omit the return and stub void return type functions
like this:

void swap(double &x, double &y){

}

I’m not a fan of this style. The return is implicit and making it ex-
plicit costs you nothing but a few seconds of typing.

Now, about the actual at of swapping. At first glance you might
decide to reassign the two values:

void swap(double &x, double &y){

x = y;

y = x;

comp 161 - lecture notes - 09 - procedures for effect 6

return;

}

This is wrong. To see why, we should trace through the statement
sequence.

Let’s assume that x and y are alias for a and b as declared in our
test8. The first assignment reassigns to x the value stored in y. At 8 x == 3.141 and y == 2.718

this point you should see the problem. Both x and y contain the
same value and we’ve lost the original contents of x all together.
To solve this, we need some temporary storage. First save the value
of x. Then write the value of y to x. Finally, write the saved value of x
to y. Here’s how we say that in C++.

\

void swap(double &x, double &y){

double temp{x}; // save x in temp

x = y; // overwrite x with y

y = temp; // write old x to y

return;

}

We can do this same sequence of assignments in the pass by value
version.

void swap(double x, double y){

double temp{x}; // save x in temp

x = y; // overwrite x with y

y = temp; // write old x to y

return;

}

We need to be sure we understand why this doesn’t work. It’s clear
that a swap occurs between x and y. If you’re not convinced, throw in
some output statements to see what’s happening.

void swap(double x, double y){

cout << "x=" << x << " y=" << y << ’\n’;

double temp{x}; // save x in temp

x = y; // overwrite x with y

y = temp; // write old x to y

cout << "x=" << x << " y=" << y << ’\n’;

return;

}

comp 161 - lecture notes - 09 - procedures for effect 7

What you’ll see is the values swap. Back in the test, or wherever
you’re calling pbv::swap from, no swap happens. We know why– the
procedure variables9 x and y are copies of their arguments, variables 9 yes. parameters are variables

a and b from our gTests, not alias. They are two totally independent
sets variables and the changes made to one set are not changes to the
other. More formally, the swap parameters for pbv::swap do not share
l-values with the arguments like they do in pbr::swap.

Mutator and Pass by Reference Recap

We started with mutators because they introduce pass by value vs
pass by reference semantics without any other baggage. It turns out
that for I/O procedures to work they way we’d like them to, we must
use pass by reference. So, let’s review the key details before moving
on:

• Reference parameter types are declared by appending an & after
the usual type name used for value parameter types.

• Value parameters can take as their arguments any expression that
can be interpreted as the appropriate type. This includes literal
values, arithmetic expressions, and variables.

• Reference parameters can take as their arguments only variables of
the appropriate type. They require something with an l-value.

• When objects are passed as arguments to a pass by value proce-
dure parameter, then the procedure’s parameters are copies of
those objects.

• When objects are passed as arguments to a pass by reference pro-
cedure parameter, then the procedure’s parameters are alias of
those objects.

I/O Procedures

Our inspiration for I/O procedures is the C++ string procedure
getline. It is an input effect procedure that takes two arguments, a
stream and a string. The input is done relative to the stream and the
result is stored in the string. We can tease out a couple of general
principles from this: take the stream as a parameter and input proce-
dures are also mutators. The later observation clearly means we’ll be
using pass-by-reference on input procedures. What isn’t obvious is
that streams must be passed by reference.

Stream objects are non-trivial. We know they maintain a buffer
for the data being input or output as well as other state to control
how the data in that buffer should be displayed. In this regard they

comp 161 - lecture notes - 09 - procedures for effect 8

are compound data
10 and the copy cost incurred by pass by value 10 Like Racket’s struct types

might be costly. This alone might give us reason to use pass-by-
reference. Creating an alias is cheap compared to copying multiple
values. If this were our only concern, however, we’d use a technique
called pass by const reference where we declare the stream a
constant to prevent inadvertent copying. We’ll see this pop us soon
enough as it’s a common occurrence when writing functional proce-
dures for object types with potentially costly copy costs.

We’re not just worried about the cost of copying stream objects
though. Most of the operations we’re going to use on our streams
have the potential to modify the stream and we’re likely to need
those changes to propagate forward in the execution our program.
Imagine using multiple input procedures to pull multiple inputs
from a stream. We’d like each procedure to modify that stream by
taking out the tokens relevant to its purpose. This is, in fact, exactly
how the I/O operators behave. Each invocation of << or >> is
clearly modifying the same stream as they’re used in succession.

A Little Polymorphism

Throughout our time with C++, we’ll be interested in three kinds of
I/O streams:

• Standard streams like cout, cin, and cerr

• File streams for reading from and writing to files

• String streams for I/O-like management of strings and unit testing
of I/O procedures.

At first glance we have a bit of a problem as each of these streams are
defined as different classes. The standard streams are objects from
the ostream and istream classes11. File streams are of objects from the 11 both defined in the iostream library

ofstream and ifstream classes12. String streams are objects from the 12 from the fstream library

class ostringstream and istringstream13. So far we’ve had to be very 13 both in sstream

specific about types. If we wrote a procedure for doing output to a
ostringstream object, then it wouldn’t work for cout because the types
are different.

The C++ streaming I/O libraries leverage a key feature of Object-
Oriented Programming14, polymorphism. Polymorphism, in this 14 OOP

context, refers to a variables ability to take on objects of different
types so long as those types are clearly defined as proper subtypes,
or extensions of the variables type. In this case the file and string
stream libraries are defined as extensions of the stream libraries in
such a way that the compiler recognizes them as subtypes of streams.
More specifically, we can use ostringstream and ofstream anywhere

comp 161 - lecture notes - 09 - procedures for effect 9

we’d use an ostream and istringstream and ifstream where we’d
use istream. These subtypes do everything that the supertype does
and then some. The result is that if we write an output procedure
such that it works for cout, an ostream, then we can pass it an os-
tringstream or an ostream instead and the compiler will allow it. If
we write procedures instead for something like an ostringstream,
then we cannot pass it the other output stream types because the
compiler cannot guarantee that the procedure won’t do something
that is specific to the output string stream subtype.

To see this at work let’s revisit our testing program from lecture
notes 7. We’ll set two goals for our new version:

1. Set it up so that pass no CLI arguments defaults to the REPL
version, pass 3 runs a single test like our CLI command version,
and passing any other number of arguments results in an error.

2. Use basic I/O procedures to reuse code between the two versions.

A side-effect of writing I/O procedures15 is that we can unit test 15 and polymorphism

them using polymorphism. Procedures we intend to use on stream
objects like cout and cin can instead be tested with string stream
objects.

Input Procedures

Our isWithin tester needs to read in a 2D point and a circle radius.
The REPL version does so from cin, an istream. The CLI-command
version does so from istringstreams initialized with the contents of
main’s argv array. Our new version will utilize two input procedures,
getPoint to read the point coordinates and getRadius for the circle
radius. When we’re executing the REPL version, we’ll read from cin.
When we’re executing the CLI-command version we’ll have to setup
one or more istringstreams with our data.

In both cases we can make use of the same pair of procedures.

/**

* Retrieve (x,y) coordinates from an input stream

* @param in input stream where user input is found

* @param x variable that stores x coordinate

* @param y variable that stores y coordinate

* @return none

* @pre in will produce two double tokens

* @post the value of x and y have been changed to data from

* the stream and the stream has had two doubles read from it

*/

void getPoint(std::istream& in, double& x, double& y);

comp 161 - lecture notes - 09 - procedures for effect 10

/**

* Retrieve circle radius r from an input stream

* @param in input stream where user input is found

* @param r variable that stores circuit radius

* @return none

* @pre in will produce one double token

* @post the value of r has been changed to data from stream in and in

* has had one double read from it.

*/

void getRadius(std::istream& in, double& r);

Let’s start with the signatures. Both procedures take istream objects
reference parameters– that is the rule for passing streams to proce-
dures. The remaining parameters are all by reference because they’re
the variables into which the input is stored. Remember, we already
observed that input procedures, and statements, are by their very
nature variable mutations.

In terms of documentation, the most important thing to notice is
probably the pre and post conditions. Preconditions we’re familiar
with. Here we’re assuming that the streams contain enough data
tokens to fill our variables. Postconditions are the things that have
changed about the system after the procedure has been executed.
When we’re talking about procedures called for effect, then postcond-
tions are where we document the expected effect. It should be clear from
this statement that you always, always, write postconditions for I/O
procedures. For these procedures we need to clearly document the
fact that we’ve modified variables and removed data from the stream.

Writing stub definitions for these procedures is the same as swap–
when the return type is void, you simply return with no return value.
Let’s look at some tests for these procedures and see polymorphism
at work.

TEST(getPoint,all){

using namespace std;

istringstream in{"2.3 4.5"};

double a{0},b{0};

getPoint(in,a,b);

EXPECT_DOUBLE_EQ(2.3,a);

EXPECT_DOUBLE_EQ(4.5,b);

EXPECT_TRUE(in.eof());

}

comp 161 - lecture notes - 09 - procedures for effect 11

First, let’s point out the polymorphism. The procedure getPoint was
written to take an istream object as its first argument. In these tests
we passed it an istringstream object, namely in. The class istringstream
is defined as a subtype, or extension, of the istream class, in a way the
compiler recognizes and so this does, in fact, pass the type checker.
Next, take careful note of the before-after nature of this test. We omit
the before tests because we’re clearly dealing with fresh initialized
variables. If the before values of our objects weren’t immediately
clear, we would do some EXPECT tests to verify the values prior to
mutation. The procedure itself is run as a single statement. It’s not
a part of a test statement. Finally, we check for the three expected
changes: the two variables have new values and the stream is empty.
The method eof returns true if the stream’s contents have all been
read. It’s short for “end of file”, even though the stream may not be
reading from a file.

The implementation of these procedures is really straight forward.
All we’re really doing is a wrapping a little abstraction around the
statements we used in our previous program.

void getPoint(std::istream& in, double& x, double& y){

in >> x >> y;

return;

}

void getRadius(std::istream& in, double& r){

in >> r;

return;

}

In practice, we’re might to want to do some error checking and val-
idation relative to the input values and the stream so that the post-
conditions are strictly enforced.

Output Procedures

Writing output procedures generally follows suit with input proce-
dures with adjustments for writing data rather than reading it. In
both cases the stream is passed by reference. For output, we typically
pass some variables whose values need to be written to the stream.
Those variables should not be changed as a result of writing output16 16 If you need data to look a certain way,

format the output. Don’t change the
data.

and are passed by value, not reference.
For our new program we want two output procedures: reportRe-

sults and CLIError. The former is used to write the results of isWithin
in a clearly readable manner. The later is used to report usage errors
to the user when they pass in the wrong number of CLI arguments.

comp 161 - lecture notes - 09 - procedures for effect 12

/**

* Print results of function isWithin to an output stream

* @param out the stream where results are printed

* @param x the x coordinate

* @param y the y coordinate

* @param r the circle radius

* @return none

* @pre r >= 0.

* @post Results of isWithin(x,y,r) are written to the stream out

*/

void reportResults(std::ostream& out, double x, double y, double r);

/**

* Print error message for bad CLI call to output stream

* @param out output stream for error message

* @param num_args number of arguments

* @param cmd_name name of command executable

* @return none

* @pre none

* @post Error message written to the output stream

*/

void CLIError(std::ostream& err, int num_args, std::string cmd_name);

Once again, a stub definition just requires a return without a
value. This is the general pattern for void return types. Let’s skip
writing it here and go right to tests.

TEST(reportresults,all){

using namespace std;

ostringstream out{""};

string expected{"isWithin(2.3 , 4.5 , 10) -> true\n"};

reportResults(out,2.3,4.5,10);

EXPECT_EQ(expected,out.str());

}

TEST(clierr,all){

using namespace std;

ostringstream out{""};

string expected{"Given 1 arguments but expected 3.\n"};

expected.append("Usage: test! x y r\n");

comp 161 - lecture notes - 09 - procedures for effect 13

CLIError(out,1,string("test!"));

EXPECT_EQ(expected,out.str());

}

Once again, polymorphism lets us use ostringstream to test these
functions that we eventually intend to use with streams like cout and
cerr. The only effect we’re looking at is the addition of data to the
stream. We can tests this by comparing the string, as returned by the
str method, to a string we hard coded. The CLIError test shows you
one strategy for managing large strings. The expected result string,
expected, is built up in pieces. Part of the string is set as the initial
value, then the append method is used to modify the string by adding
the remaining characters to the end of the initial string.

The actual definitions for these procedures are, once again, basic
abstractions over what we had in our programs originally.

void reportResults(std::ostream& out, double x, double y, double r){

out << "isWithin(" << x << " , " << y << " , " << r << ") -> ";

out << std::boolalpha << TwoD::isWithin(x,y,r) << "\n";

return;

}

void CLIError(std::ostream& err, int num_args, std::string cmd_name){

err << "Given " << num_args << " arguments but expected 3.\n";

err << "Usage: " << cmd_name << " x y r\n";

return;

}

A new isWithin tester

Now that we have a library of I/O functions to use in developing our
UI for isWithin, we can return to our updated program.

int main(int argc, char* argv[]){

using namespace std;

double x{0.0},y{0.0},r{0.0};

if(argc == 1) // no arguments, drop to REPL

while(true){

std::cout << "Enter x & y coordinates :";

getPoint(std::cin,x,y);

std::cout << "Enter circle radius: ";

getRadius(std::cin,r);

comp 161 - lecture notes - 09 - procedures for effect 14

reportResults(std::cout,x,y,r);

}

else if(argc == 4){ // 3 arguments for isWithin

istringstream clistrm{string(argv[1]) + " "+

string(argv[2]) + " " +

string(argv[3])};

getPoint(clistrm,x,y);

getRadius(clistrm,r);

reportResults(cout,x,y,r);

}

else{ //argc is not 4 or 1

CLIError(cerr,argc-1,string(argv[0]));

return 1;

}

return 0;

}

We used a basic conditional to branch on argc. When only the pro-
gram name is used at the CLI, we drop into our REPL program.
When three additional arguments are passed, we assume their dou-
bles for isWithin and carry-out the CLI version. Otherwise we got
a weird number of arguments and need to print an error message.
Notice that we’re leveraging polymorphism in order to reuse our I/O
functions here as well. The input procedures are called both with cin
and an istringstream. It’s also worth noticing that we opted to create
one long istringstream with all three input values for our CLI ver-
sion. The fact that our input procedures modify the stream let’s us
thread the object through multiple procedures, modifying it as we
go. The last thing we should notice is the variable declaration. When
you’re declaring multiple variables of the same type, you can do so in
a single line separating each initialization with a comma like this

TYPE NAME{VAL},NAME{VAL},... ;

Procedure Chaining and Returning References

If you look at the signatures for the string function getline, you’ll
notice that they return a reference to an istream. This is a common

comp 161 - lecture notes - 09 - procedures for effect 15

practice for I/O procedures and in several other scenarios we’ll see
this semester. The intent is usually to allow chaining of procedure
calls17. A perfect example of this is the streaming I/O operators. 17 or operators or method calls

Both << and >> return references to streams and by doing so
they allow us to do things like this:

cout << 1 << 3 << ’a’ << b;

Let’s parenthesize this statement to highlight order of execution:

((((cout << 1) << 3) << ’a’) << b);

First we put 1 to cout. The return result is cout with 1 added to the
buffer. Let’s just call that cout′. Now we effectively have cout′ << 3 to
do next. This process continues until the end. The key observation
is that the modified stream returned by one operator becomes the
stream input to the next operator. This is operator chaining.

To see how we can leverage this with procedures, let’s go back and
redefine our input procedures to return references and then chain
them together in our main program. First we need to revisit the basic
declaration and documentation.

/**

* Retrieve (x,y) coordinates from an input stream

* @param in input stream where user input is found

* @param x varibale that stores x coordinate

* @param y variable that stores y coordinate

* @return reference to the input stream

* @pre in will produce two double tokens

* @post the value of x and y have been changed to data from

* the stream

*/

std::istream& getPoint(std::istream& in, double& x, double& y);

/**

* Retrieve circle radius r from an input stream

* @param in input stream where user input is found

* @param r variable that stores circuit radius

* @return reference to the input stream

* @pre in will produce one double token

* @post the value of r has been changed to data from stream in

*/

std::istream& getRadius(std::istream& in, double& r);

The difference is fairly subtle. We’ve added a return type, a reference
to an istream, and we’ve documented that return type. Nothing else
about the procedure changes.

comp 161 - lecture notes - 09 - procedures for effect 16

Now let’s stub these procedures. Remember we must return a
stream reference. The smartest thing to do, the thing we’ll ultimately
do anyway if we want chaining to occur, is to return the stream argu-
ment.

std::istream& getPoint(std::istream& in, double& x, double& y){

return in;

}

std::istream& getRadius(std::istream& in, double& r){

return in;

}

Testing is a little bit more complicated now. Before writing the
tests lets lay out our expectations in plain English. We have three.
The first two are hold overs from before, the last is to account for the
return value.

• The variable arguments must be mutated relative to the contents of
the stream

• The stream has had data removed from it.

• The return value is literally the same stream as the input stream.

The new expectation is a different beast than we’ve seen before. In
the past our concern was with equality of value, specifically r-value.
Now, to enable chaining we need to be certain that the l-value, the
address of the input object and the returned object are the same.
Now let’s say all of this in C++.

TEST(getpoint,v2){

using namespace std;

istringstream in{"2.3 4.5"};

double a{0},b{0};

EXPECT_EQ(&in,&getPoint(in,a,b));

EXPECT_DOUBLE_EQ(2.3,a);

EXPECT_DOUBLE_EQ(4.5,b);

EXPECT_TRUE(in.eof());

}

TEST(getradius,v2){

comp 161 - lecture notes - 09 - procedures for effect 17

using namespace std;

istringstream in{"10"};

double a{0};

EXPECT_EQ(&in,&getRadius(in,a));

EXPECT_DOUBLE_EQ(10.0,a);

EXPECT_TRUE(in.eof());

}

Most of the tests are hold-overs from before that check our first two
expectations. The new element is checking the return value. We can
manage this in the same way we did for our functional procedures by
comparing the return value of the procedure to an expected value. In
both cases we want to be certain that in and the return value are the
same. I’ve demonstrated two ways of approaching this test.

The test for getPoint utilizes the “address of” operator & to get the
actual memory address of the two objects. So EXPECT_EQ(&in,&getPoint(in,a,b))
literally compares the address of the two objects and passes if and
only if they’re the same. You can use the operator & on any object or
variable to effectively get the l-value for the object. The effect of this
operator also gives you some insight as to the source of the pass-by-
reference syntax.

Finally, we implement.

std::istream& getPoint(std::istream& in, double& x, double& y){

in >> x >> y;

return in;

}

std::istream& getRadius(std::istream& in, double& r){

in >> r;

return in;

}

The only real difference here is the return statement. Just like when
passing objects as reference arguments, it’s not your job to do any-
thing special to the return variable. By declaring the return type
a reference and returning an object, the system will manage the r-
value/l-value distinction.

So, what did all of this buy us? Not much really. For our problem
we got the option to chain the input procedures together. It’s not
clear that this is an improvement really. However, this technique is
critical to some code we’ll be writing soon, so this is a good oppor-
tunity to being our exposure to the idea of returning references and

comp 161 - lecture notes - 09 - procedures for effect 18

chaining procedures.
Here we modify our REPL prompt slightly to leverage chaining in

both the REPL and the CLI versions.

using namespace std;

double x{0.0},y{0.0},r{0.0};

if(argc == 1) // no arguments, drop to REPL

while(true){

cout << "Enter point x & y coordinates and a circle radius r: \n";

UI2::getRadius(UI2::getPoint(cin,x,y),r);

UI::reportResults(std::cout,x,y,r);

}

else if(argc == 4){ istringstream clistrm{string(argv[1]) + " "+

string(argv[2]) + " " +

string(argv[3])};

UI2::getRadius(UI2::getPoint(clistrm,x,y),r);

UI::reportResults(cout,x,y,r);

}

else{ //argc is not 4 or 1

UI::CLIError(cerr,argc-1,string(argv[0]));

return 1;

}

return 0;

}

Again, there is really no significant gain from our change to chain-
able procedures for the problem we’re working on here. On the other
hand, composition of functions is clearly a boon to our ability to
program. Composing systems is a corner stone of computing. What
we’ve exposed here is composition while passing state, namely the
stream, through the thread of execution. Chaining procedures like
we did here not only allows us to compose two lines into one, but
it allows us to propagate effects across the composition. Using this
technique we can next effects in the same fashion we nested func-
tions.

	 Designing for Effect
	 Pass-by-Value and Pass-by-Reference
	 I/O Procedures
	A new isWithin tester
	Procedure Chaining and Returning References

