
COMP 161 - Lecture Notes - 08 - Strings
February 8, 2016

In these notes we take a look at the world of string data in C++. In
doing so we’re exposed to some basic ideas in working with object
classes.

Objects and Classes

We’ve started to use the term object to refer to some of the data in
or programs, so let’s be sure we have a clear sense of what it means.
In the most general sense, an object is a value in memory. We often
refer to variables as objects because a variable is a named and typed
piece of memory. For example, if we initialize the following variables,

int x{0};

double pi{3.14};

char let{’x’};

bool isOK{false};

Then we’ve introduced four objects to our program: the integer object
x, the double pi, the character let, and the boolean isOk. We didn’t
refer to these as objects at first because their types are fundamental
and it’s just as easy to think of them strictly in terms of their types.

In the last set of notes we learned about some non-primitive types:
istringstream, ostream, and istream. In particular we worked with a
few pre-defined objects– cout, cin, and cerr– and initialized some
istringstream objects of our own. Using the blanket term object for this
data lets us ignore the underlying complexity of the value. It’s not
the least be clear what an istringstream looks like. More importantly,
we don’t need to know what, exactly, it looks like. We simply need to
know how to work with it though operators and procedures.

When we’re talking about types that are not built-in, types that
are defined in libraries, types like ostream, istream, and istringstream,
then we refer to the type as a class. Put another way, a class is
synonym for type where calling a type a class implies that the type
is user-defined. The term object then gets used to refer to instances of
that class, or values of a class in memory.

From the users perspective1, working with classes is typically 1 program with the class as opposed to
program the classabout working with procedures for a few general tasks:

• Constructors allow you to build objects from that class

• Selectors allow you to access some or all of the data within an
object

comp 161 - lecture notes - 08 - strings 2

• Mutators allow you to modify some or all of the data within an
object

• Queries allow you to learn something about the object and its
state

Many of the procedures we’ll work with are designed as a part of
the class definition itself and are called differently than the usual
procedure. We’ll often refer to these procedures as class methods,
or just methods. As we explore the C++ string class, you’ll see all of
these at work.

Strings

A string is a sequence of characters. In every language I know of,
string literals are written as characters in double quotes. Like this:

"I am a string"

" so am I "

"12345"

In C++, we must learn to navigate two types for string data. One is
primitive, built-in and is the type associated with string literals. The
other is a string class that has way more batteries included. Thus, or
usual problem is we almost always start with some kind of built-in
string value when what we want is a string class object.

C-Strings: char*

The C-String type is unavoidable because any time you type a string
literal2 the compiler sees it as a C-String value– you can’t express 2 characters in double quotes

a string value in your program without stepping on the C-String
type. The type annotation for C-Strings is char*. Anytime you see this
type, you’re dealing with C-Strings. The name C-String comes from
the fact that these values are handled in exactly the same manner as
string data in the C programming language. In fact, it’s also the way
you tend to manage strings in assembly language as well.

Until we have a reason to do otherwise, we’ll avoid directly work-
ing with C-Strings like the plague. It’s not that there’s anything
wrong with them really, it’s just that we have other libraries that
make doing interesting things with strings much easier than if we
stayed with raw C-Strings. We saw this with our CLI based program
in the previous lecture notes. The strings coming from the CLI are
C-Strings. We immediately fed them to istringstream objects as initial
values. That library then took care of reading the character sequence
as if it were a double.

comp 161 - lecture notes - 08 - strings 3

The C++ string Class

Our preferred string type is the std::string class as defined in the
string library3. We can initialize string variables from string literals: 3 http://www.cplusplus.com/reference/string/string/

std::string str{"hello"};

std::string ing{" world!"};

Occasionally we want to have a string object independent of an actual
variable. This is very useful in testing for example. To do this we use
a standard constructor form where the class name is followed by a
set of parenthesis with the value inside them. Here we see this in
the context of some tests that examine the values of our previously
declared string variables:

EXPECT_EQ(std::string("hello"),str));

EXPECT_EQ(std::string(" world!"),ing));

We can, in fact, use gTest’s EXPECT_EQ test on C++ string data
because the class definition includes a definition for string equality.
What we cannot do, is compare C++ strings to C-Strings. These tests
will give you nothing but compiler errors:

EXPECT_EQ("hello",str);

EXPECT_EQ(" world!",ing);

As far as the machine is concerned, a C-String, the expected value,
and a C++ string object’s value, the actual value, are not the same
thing. This is subtle, annoying, and will cause you lots of headaches
if you don’t internalize this ASAP. Logically, we know they’re the
same. This stupid box we’re programming doesn’t know the differ-
ence a priori.

It is sometimes useful to get the C-String version of a string object.
To do this we can using a class method. Let’s see this at work and
then talk about what we’re seeing. Here’s the same tests as before but
now we’re comparing C-Strings using gTest’s EXPECT_STREQ.

EXPECT_STREQ("hello",str.c_str());

EXPECT_STREQ(" world!",ing.c_str());

Class methods are invoked using the dot operator, .. It’s a bi-
nary operator whose left-hand operand is an object and right-hand
operand is a method defined for that object’s class. The object acts
as an implicit argument to the method. We say that the methods acts
on the object with any parameters passed to the method. In the case
of c_str, there are no arguments so the only real “input” is the object
upon which it’s called. The c_str method could also be written as a
single argument procedure that takes a string and returns a C string.

comp 161 - lecture notes - 08 - strings 4

As a class method we say it takes no arguments but acts on a string
object. It’s a subtle but important difference.

You don’t necessarily need variables to invoke class methods4. 4 it’s the most typical use case, but the
dot operator doesn’t care if the left
operand has a name or not

Here we see c_str at work on an unnamed string object.

EXPECT_STREQ("wierd",std::string("wierd").c_str());

The string library contains a host of useful methods and opera-
tors and you’re encouraged to spend some time with the reference
to see what’s out there5. For now, I’ll leave you with a few gTests 5 http://www.cplusplus.com/

reference/string/string/that demonstrate a few of the more useful functional methods and
operators and let you connect the dots on those:

std::string str{"hello"};

std::string ing{" world!"};

// Size/Length

EXPECT_EQ(5,str.length());

EXPECT_EQ(5,str.size());

// Character Selection

EXPECT_EQ(’ ’,ing[0]);

EXPECT_EQ(’w’,ing[1]);

EXPECT_EQ(’ ’,ing.at(0));

EXPECT_EQ(’w’,ing.at(1));

// Substring Selection

EXPECT_EQ(std::string("ell"), str.substr(1,3));

EXPECT_EQ(std::string("orld"), ing.substr(2,4));

EXPECT_EQ(std::string(" wor"), ing.substr(0,4));

EXPECT_EQ(std::string(" ld!"), ing.substr(4));

// Concatenate

EXPECT_EQ(string("hello world!"), str + ing);

String class mutators expose us to the world of variable mutation.
In order to demonstrate their effect on a string object with tests we
must do a pre-post test. One test establishes the state of the variable
prior to mutation, the second test is then run after the mutator is
called to demonstrate that the desired change has occurred. This
technique is import to understand– you’ll be writing a lot of tests like
this as we start designing procedures for state mutation. The first
test you’ll see demonstrates the effect of assignment6 with strings. 6 =

I’ll then make use of assignment to reset variables post-mutation as
needed.

// The assignment operator with C++ and C strings

http://www.cplusplus.com/reference/string/string/
http://www.cplusplus.com/reference/string/string/

comp 161 - lecture notes - 08 - strings 5

std::string s{""};

EXPECT_EQ(std::string(""),s); //before

s = std::string("hello!"); //mutation

EXPECT_EQ(std::string("hello!") , s); //after .. and before

s = "world";

EXPECT_EQ(std::string("world") , s);

std::string str{"hello"};

std::string ing{" world!"};

// string append

EXPECT_EQ(std::string("hello") , str);

str.append(ing);

EXPECT_EQ(std::string("hello world!") , str);

str = "hello"; // reset

str.append("world!"); //works with C strings too

EXPECT_EQ(std::string("helloworld!") , str);

str = "hello"; // reset

// erase

EXPECT_EQ(std::string("hello") , str);

str.erase(0,2);

EXPECT_EQ(std::string("llo") , str);

str = "hello";

str.erase();

EXPECT_EQ(std::string("") , str);

str = "hello";

str.erase(2,3);

EXPECT_EQ(std::string("he") , str);

str = "hello";

// Single character assignment and append

EXPECT_EQ(std::string("hello") , str);

str[0] = ’H’;

EXPECT_EQ(std::string("Hello") , str);

str[2] = ’L’;

EXPECT_EQ(std::string("HeLlo") , str);

str.at(4) = ’O’;

EXPECT_EQ(std::string("HeLlO") , str);

str.push_back(’!’);

EXPECT_EQ(std::string("HeLlO!") , str);

The last thing we’ll look at from the string library is the getline
procedure. This is a classic example of a Input effect based proce-

comp 161 - lecture notes - 08 - strings 6

dure. The typical use is to read a whole line from an input stream ob-
ject like cin. Typically, input is broken up by white space. Sometimes
you want to read several tokens in and stop when you encounter the
newline character. For example, if you want to get my name as one
string, “Logan Mayfield”, you’d either need to read each piece in to
a string, then concatenate or append, or use getline. Let’s demon-
strate7. 7 assume my name is typed in the

obvious places
std::string first{""};

std::string last{""};

std::string name{""};

std::cin >> first >> last;

EXPECT_EQ(std::string("Logan",first));

EXPECT_EQ(std::string("Mayfield",last));

name = first + " " + last;

EXPECT_EQ(std::string("Logan Mayfield"), name);

name = "";

std::getline(cin,name);

EXPECT_EQ(std::string("Logan Mayfield"), name);

As an input procedure, getline is also a mutator as it must assigned
the input value to the second argument, namely a variable. This im-
plies a key issue when working with input and mutation procedures:
you must pass variables. Something like getline(cin,string()) might work
but is useless. Even if the string object passed as the second argu-
ment were modified, we’d have no way of accessing the results.

A Note on Testing Effects

The previous section merits careful study not just because it intro-
duces key string functionality, but because it introduces how to estab-
lish and test expectation in our new effect-based world. Our testing
regime is critical both for evaluating the correctness of our code and
for helping us to establish expected behavior of our code before we
even get down to writing it. Writing these tests is a vital tool for soft-
ware development as well as general problem solving.

When we test functions, we simply compare the actual function
return value to the expected value. Effects are not about things re-
turned but about change to the system. We need to know if a vari-
able’s stored value did or did not change. We need to know if input

comp 161 - lecture notes - 08 - strings 7

from a stream was read correctly. We need to know if the characters
written to an output stream were written properly.

Strings and Procedures

Once you’ve included the string library, you can use string types in
the same way you use other types. The only thing to be aware of is
that unlike the base C++ types, the string type is defined in the std
namespace. Our current practice is to use using namespace directives
only in the body of a function. This means that instances of the string
type that occur in the function header are not subject to this directive
and we must explicitly state the namespace8. Here’s a complete 8 you can also put the using namespace

directive in the file’s global space, but
we’ll shy away from that practice

function for strings to illustrate what I mean.

namespace ln8{

/**

* Return the rest, aka all but the first, of a non-empty string.

* @param astr A string

* @return the rest of astr

* @pre astr.length() > 0

* @post none

*/

std::string rest(std::string astr);

}

std::string ln9::rest(std::string astr){

using namespace std;

// a mutation based solution

astr.erase(0,1);

return astr;

// non-mutation based solution with substr

// return astr.substr(1);

}

TEST(rest,all){

std::string a{"this"};

std::string b{"his"};

EXPECT_EQ(b,rest(a));

EXPECT_EQ(std::string("is"),ln8::rest(b));

EXPECT_EQ(std::string("dog"),ln8::rest(std::string(" dog")));

comp 161 - lecture notes - 08 - strings 8

}

String Streams

The string stream library9. Provides us with classes for using C++ 9 #include<sstream>

strings as streaming I/O devices. At first glance this might seem
strange because string objects and string data are obvious I/O de-
vices like stdout and stdin. However, all data printed as output
ends its journey as character data and data read as input begins as
character data; the whole I/O system is built around working with
sequences of characters, i.e. strings.

Using strings as streams is, in a way, like ignoring the output des-
tination or input source. Streaming data to string let’s you get the
character sequence that you’d like to send to cout prior to actually
sending it. Conversely, streaming input from a string is a bit like hav-
ing the characters from standard in first saved to a string for you to
then read. The important thing here is that we can use these streams
to mock up what happens at the standard output and standard input
in such a way that we can test our I/O with frameworks like gTest.

The other use for string streams, in particular input string streams,
that we’ve already seen is using the library to manage the conversion
from character sequences to other types and vice versa. When you
have a string that looks like a double value and you really want that
double value, the string streaming lets you use the I/O library for
reading the string to a double. The new C++11 additions to the string
library actually provide functions for this kind of thing10, but we’ll 10 see stoi and stod and to_string

focus on the streams as we’ll need to get comfortable with them for
I/O testing purposes.

The istringstream type lets us read data from strings in the same
fashion that we do from the standard input stream cin. We can ini-
tialize istringstream objects from C and C++ strings. Here are few
demonstrations:

std::istringstream istr{"Hello 1345 3.4 a"};

std::string s{""};

int x{0};

double d{0.0};

char c{’\0’};

istr >> s >> x >> d >> c;

EXPECT_EQ(std::string("Hello") , s);

EXPECT_EQ(1345 , x);

comp 161 - lecture notes - 08 - strings 9

EXPECT_DOUBLE_EQ(3.4,d);

EXPECT_EQ(’a’, c);

The ostringstream types lets us write data to a string in the same
fashion we do from the standard output stream cout. You can initial-
ize the stream with some data, but it’s probably more likely that we’ll
start with an empty string stream and fill it with data. To extract the
string we use the class method str.

std::ostringstream sout{""};

sout << "Hello" << 1345 << 3.4 << ’a’;

EXPECT_EQ(std::string("Hello13453.4a"), sout.str());

Let’s quickly return to our getline example to see how we can have
testable I/O. To test getline working with cin you physically have to
type input. With a string stream you can fill the stream and then test
the I/O. All of this can be done by the computer and requires zero
human intervention at the time of testing.

string first{""};

string last{""};

string name{""};

std::istringstream sin{"Logan Mayfield"};

sin >> first >> last;

EXPECT_EQ(std::string("Logan"),first);

EXPECT_EQ(std::string("Mayfield"),last);

name = first + " " + last;

EXPECT_EQ(std::string("Logan Mayfield"), name);

name = "";

std::istringstream sin2{"Logan Mayfield"};

std::getline(sin2,name);

EXPECT_EQ(std::string("Logan Mayfield"), name);

	Objects and Classes
	Strings
	String Streams

