
COMP 161 - Lecture Notes - 05 - The Compiler
January 20, 2016

In these notes we talk about compiling our multi-file C++ program
in order to check syntax errors, run unit-tests, or build the main ex-
ecutable. After learning the basics of the the GNU Compiler Collec-
tion’s1 C++ compiler g++, we’ll look at using make and Makefiles to 1 GCC
manage the compilation process.

Our Example Program

We’ll be exploring the compilation of a simple four file program de-
veloped with our organizational style. This is a toy program that
computes the factorial in several different ways. The files are as fol-
lows:

1. factorial.h
The header file for the factorial library.

2. factorial.cpp
The implementation file for the factorial library.

3. fact_test.cpp
The unit tests for the factorial library

4. lab2_main.cpp
The main procedure that utilizes that lets you compute the
factorial using several different methods.

Our goal is to compile this code for three purposes:

1. Compile one or more cpp files to a non-executable object file to
check for syntax errors.

2. Compile our tests to an executable that lets us run and evaluate
unit tests.

3. Compile the main procedure and program to an executable ver-
sion of our program.

Before we tease out commands for these tasks, let’s familiarize our-
selves with the basic capabilities of the compiler and the process by
which code turns in to an executable.

The Compilation Process

Our compiler carries out a four stage process2: 2 the verbose option, -v, shows you
everything the compiler does. try it
sometime1. Preprocessor



comp 161 - lecture notes - 05 - the compiler 2

2. Compiler

3. Assembler

4. Linker

The g++ compiler has options which allow you to control how
much of this process is carried out3. Absent these options, it will take 3 http://gcc.gnu.org/onlinedocs/gcc/

Overall-Options.htmlwhatever you give it and attempt to finish the compilation process.
So, if you give something that’s already been preprocessed, it will
attempt to compile, assemble, and link it. If you give something
that’s gone through the assembler, it will attempt to link it. Now let’s
look a bit at what each of these stages accomplishes.

Preprocessor

The preprocessor essentially transforms our C++ in to different C++
from it. Perhaps the most important transformation it does is to
process all the statements beginning with the # character. The most
notable of these is #include, which more or less tells the preprocessor
to copy and paste a header file in to the current file. The preprocessor
is also a vital component of our unit testing framework, gTest4. The 4 https://code.google.com/p/

googletest/wiki/Primertests we write look like procedures, but are in fact Macros5. So, when
5 A macro gets expanded into C++ code
by the processorwe write our tests, the preprocessor transforms all of our code into

different C++ as directed by the unit testing macros.
The option -E causes the compiler to stop after preprocessing and

then print the output to the terminal. We can use > to redirect the
output from stdout to a a file. To see the what happens to the include
directives, we could do.

g++ factorial.cpp -E > pp_factorial.cpp

For a really drastic transformation, look at what happens to our
unit test macros:

g++ fact_tests.cpp -E > pp_fact_tests.cpp

We’ll almost never have cause to stop after pre-processing, but you
should still be aware of this stage and the role it plays in building
your program.

Compiler

The compiler is where the whole system gets it name. It turns high-
level C++ into low level assembly. We can stop the compiler after it
compiles using the -S option. By default, this option produces an
assembly code file with the s extension but the same name as the file
being compiled6. If you want to see some assembly try: 6 so we don’t need to name the output

with -o

http://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html
https://code.google.com/p/googletest/wiki/Primer
https://code.google.com/p/googletest/wiki/Primer


comp 161 - lecture notes - 05 - the compiler 3

g++ factorial.cpp -S

To view the assembly code, just open the newly created factorial.s
with emacs or less. The assembly code is the most accurate repre-
sentation of what the computer really does when our program is
running. When you’re doing supper fine-tuned optimizations or
tracking down really nasty bugs, you might have to look at the as-
sembly. Thankfully, we’ll never be in this situation in this class. So,
you’ll never really have cause to use the -S option.

At this stage we want to introduce some important options. The
first is -Wall, which directs the compiler to provide a robust set of
warnings in addition to errors. These warnings can help you avoid
subtle bugs and help you write code that conforms to good C++
practices. The second options is -std=c++11. This option tells the
compiler we’re using the C++11 standard7. By default, it compiles 7 std is the standard abbreviation for

standardto an older standard that does not support several features of C++11

that we’ll make use of. Adding these changes our command to:

g++ factorial.cpp -S -Wall -std=c++11

Assembler

The assembler takes human readable assembly8 and produces a 8 assuming you know the language

machine readable object file. The -c option will produce an object
file with the same name as your source file9 but with the o extension 9 cpp file

instead of cpp. This stage is as far as you can go without a main
procedure and the stage we target to run a complete check of the
syntax. We’ll compile to object files often.

You would use the following command to build an object file for
the factorial library.10 10 Notice the compiler options are still

present
g++ factorial.cpp -c -Wall -std=c++11

You can open the resultant factorial.o with emacs and clearly see
that, to the human eye, it’s gibberish.

Linker

The linker stitches together object files and creates an executable.
This means that one11 of the object files must contain a main proce- 11 and only one!

dure. There’s no special command to link, just don’t use any of the
other options. Assuming we used the option -c to create factorial.o
and lab2_main.o, we could build our executable as follows:

g++ factorial.o lab2_main.o

By default, the compiler names the executable a.out. This is a terrible,
terrible name. It is not the least bit descriptive and provides now cues



comp 161 - lecture notes - 05 - the compiler 4

as to the effect and purpose of the program. It also means you can
only have a single executable in your current directory. We want two
executable, a main executable and the executable to run our tests. We
could use CLI commands to rename files, but the compiler provides
an option for naming compilation output files: -o <output-name>.

This command produces an executable named factorial. The com-
piler options aren’t necessary here because the object files have al-
ready been run through the compiler.

g++ factorial.o lab2_main.o -o factorial

Along with the assemble option, we’ll use this form of the g++ often.

Errors and Warnings

Every part of the compiling process checks for problems. When no
problems are found, all of the commands listed above produce no
output to the stdout. Instead they produce files; which is a file I/O
side-effect. More often than not, the compiler will find a problem.
In fact, we’ll often tell the compiler to more aggressively look for
suspicious code and report it back to us as an error or warning.

When building objects, we’ll always use the -Wall option to tell
the compiler to report warnings about code that could be the cause
of problems down the line. We might like to ignore these warnings,
but as professionals we’re concerned about correct code and so we’ll
try to address all or most of them as they come up. To assemble and
object file with warnings, we use the following:

g++ factorial.cpp -c -Wall

Errors and warnings show up on the CLI. Here’s the error you
get12 when you forget a semi-colon. 12 you will see this at some point

The numbers underlined are the line and column number, respec-
tively, where the compiler found this error. If this were simply a
warning, then the underlined word error would be replaced by warn-
ing.

Compiling Our Unit Tests

We already know enough to get our main program compiling. To
get our unit tests compiled and executed, we’ll need to utilize some



comp 161 - lecture notes - 05 - the compiler 5

linker options and direct the compiler to link in pre-compiled li-
braries already installed on the server. First we want the object file
for our tests.

g++ fact_tests.cpp -Wall -std=c++11 -c

Assuming our test code assembles without problems, we’re ready
to link to a main program that will run our tests. Thankfully, the
Goggle C++ unit testing framework provides a ready to go main
program that is setup for running tests in a variety of ways. In order
to compile with it, we must explicitly link in a few libraries.

1. pthread
The Posix Thread library. It’s used by gTests. To link, use the g++
option -lpthread

2. gtest
The main gtest library. To link, use the g++ option -lgtest

3. gtest_main
The gtest main procedure. To link, use the g++ option -lgtest_main

The command to produce the executable form of our tests is then:

g++ factorial.o fact_tests.o -lgtest -lgtest_main -lpthread -o fact_tests

This command links our object files with three other libraries to pro-
duce the executable file fact_tests. One very important note about this
command. The order in which you list the link options matters. Specif-
ically, the pthread library needs to come after the gtest library. To
avoid problems, just stick to the order given above13. 13 using make will solve this problem

for us

Putting It All Together

Let’s build our factorial program form step one. First we assemble all
our source files and get objects files for them.

g++ factorial.cpp -Wall -std=c++11 -c

g++ lab2_main.cpp -Wall -std=c++11 -c

g++ fact_tests.cpp -Wall -std=c++11 -c

In practice, you’ll probably won’t do all these steps at once as you’ll
be working on different files at different times. You’ll also probably
end up re-running one or more of these after you correct syntax
errors and warnings. For now, we have a clean, ready to go program,
and can go ahead and get all of the source code assembled.

With our object files assembled, we can now begin linking objects
to create our testing and main executables.



comp 161 - lecture notes - 05 - the compiler 6

g++ factorial.o fact_tests.o -lgtest -lgtest_main -lpthread -o fact_tests

g++ factorial.o lab2_main.o -o fact_main

Presumably, we’d do the test executable first because if your tests
don’t pass it’s highly unlikely your main program will do what you
want it to do. So once again, in practice you might not do both of
these back to back very often.

A common occurrence is that running tests finds a bug in your
code. You’ll go fix that and re-run your test. The change to your
source file means that your object is out of date which in turn means
your test executable is out of date. To sync things back up with your
source code you will need to re-compile the object then relink the
executable. If the changes were to the factorial library.

g++ factorial.cpp -Wall -std=c++11 -c

g++ factorial.o fact_tests.o -lgtest -lgtest_main -lpthread -o fact_tests

Note that your main executable is now out of sync as well and you’ll
need to relink that if necessary.

Keep these files in sync can be a pain. It’s easy to lose track of
things when you’re waist deep in code. We’ll soon see how the pro-
gram make solves this problem for us at the simple cost of writing
basic build scripts. Before we get there though, let’s look at executing
our programs and in particular our test executable.

Running Your Main Executable

You run your program the same way you run bash commands. The
only difference is that you typically have to provide the path to your
program as your working directory is seldom one of the places the
system looks for executable by default. Thankfully, we can give the
CLI the relative path to “here” very easily.

Our factorial program takes two arguments. The first is the num-
ber from which we want to compute the factorial and the second
is the version of the factorial code we want to use to do the com-
putation. This program provides four versions. So, the following
command computes the factorial of 5 using implementation number
2.

./fact_main 5 2

The ./ preceding the executable name forces linux to look in your
current directory for a program called fact_main. If we leave the path
specifier off, then it will look in all the places listed in the PATH
variable.



comp 161 - lecture notes - 05 - the compiler 7

Running Tests with Google’s main

The pre-built main we’re using to run our tests will, by default, run
and report on every test you write. With the use of some command
line arguments, we can control which tests it runs14. You typically 14 https://code.google.com/p/

googletest/wiki/AdvancedGuide#

Selecting_Tests
fix one procedure at a time, so running tests for other procedures is
a distraction. Take some time to get comfortable with this section as
working with tests is likely to be how you’ll spend a great deal of
your time in this class.

First we need to notice how tests are identified. To do this we need
to look at the source code in fact_tests.cpp. When we write a test we
specify a test case and test name as follows:

TEST(case,name){

//test code here

}

In fact_tests.cpp we see four cases: ver1, ver2, ver3, and ver4. The sec-
ond and third versions have two named tests: factorial and factHelper.

Lets proceed as if our test program were named fact_tests. To see a
list of all the tests cases and names we can run:

./fact_tests --gtest_list_tests

To run the test factorial from case ver2, we can run:

./fact_tests --gtest_filter=ver2.factorial

To run all of the tests in ver2 we do:

./fact_tests --gtest_filter=ver2.*

As you can see, we can use the * wildcard in forming the filter string.
Odds are we either want to run one test or a whole test case, so the
above examples pretty much cover our use cases.

To run every single test15 you simply execute the program without 15 which you might not want to do often
in practicearguments.

./fact_tests

Using make and Makefiles

The compiler is great, but we’ve already seen a couple of sources of
frustration:

1. Quirky, long commands like the one we use to build test executa-
bles

2. Keeping all the objects and executables in sync

https://code.google.com/p/googletest/wiki/AdvancedGuide#Selecting_Tests
https://code.google.com/p/googletest/wiki/AdvancedGuide#Selecting_Tests
https://code.google.com/p/googletest/wiki/AdvancedGuide#Selecting_Tests


comp 161 - lecture notes - 05 - the compiler 8

3. Having to run multiple commands to produce executables

The program make helps us avoid a lot of these buy giving us a
means to script the compilation process and by checking for the need
to sync without our explicit say so. By scripting the process we can
type unwieldy commands once and use shorting make commands
to invoke them. Then, whenever make builds a file for us, it will au-
tomatically ensure that all the files upon which it depends are up to
date. If we were doing single file programs, make would be over kill.
With even just one library, we’ll find that taking the time to get used
to make is worth the effort16. 16 Checkout http://mrbook.org/

tutorials/make/ in addition to these
notes

Basic make

It turns out that make can infer a lot about what you’re doing from
the file types you’re working with. The following commands are
equivalent:

g++ factorial.cpp -c

make factorial.o

We know the first command. It builds the object from from the
source file. The equivalent make command works in reverse and
determines that the most likely source file for the intended object is
factorial.cpp.

While this is a nice demonstration of the power of make, it’s not
that useful. We want compiler flags like -Wall and -std=c++11. We
also need to be able to do more complex compilations that include
linking. So what we need is to tell make to behave in some way other
than its default behavior. To do this we create a file named Makefile.
In that file, we’ll layout some rules and define some basic commands
for make relative to directory containing Makefile.

Basic Makefiles

Makefiles contain a set of rules that control the behavior of the make
command. When a make is run in or relative to a directory contain-
ing a Makefile, then it will use the rules in that Makefile. Otherwise
it settles back to defaults.

Makefile rules have a very simple form:

target : dependencies

rules

...

The target is the file to be made. The dependencies are the files needed
to make the target. Finally, the rules are the commands used to turn

http://mrbook.org/tutorials/make/
http://mrbook.org/tutorials/make/


comp 161 - lecture notes - 05 - the compiler 9

the dependencies in to the target. It is vital to note that the spacing
before each rule must be a tab17. You can’t use multiple spaces or 17 Seriously. It must be a tab

anything other than a single instance of the tab character.
Let’s start with rules for our object files.

factorial.o : factorial.cpp

g++ factorial.cpp -Wall -std=c++11 -c

fact_tests.o : fact_tests.cpp

g++ fact_tests.cpp -Wall -std=c++11 -c

lab2_main.o : lab2_main.cpp

g++ lab2_main.cpp -Wall -std=c++11 -c

Now, when you type make factorial.o, then make will find the rule for
making factorial.o and execute that rule.

So far so good. Let’s build some rules for making our test pro-
gram.

fact_tests : factorial.o fact_tests.o

g++ factorial.o fact_tests.o -lgtest -lgtest_main -lpthread -o fact_tests

fact_main : factorial.o lab2_main.o

g++ factorial.o lab2_main.o -o fact_main

If we combine the above rules with our previous rules for the library
implementation objects, then we have everything we need to build
our executables.

Let’s say that you’ve compiled nothing. All you have are your
source files. Then the command make fact_tests will first note that all
the dependencies are missing and invoke the rule for each depen-
dency prior to executing the fact_tests rule. Thus, in one simple com-
mand, we’d invoke seven compile commands. Awesome. It gets bet-
ter. What if you changed something in factorial.cpp? You can simply
re-run make fact_tests and make will notice that the dependency facto-
rial.o is out of sync because its dependency factorial.cpp has changed
and re-run those rules. Super awesome.

The last thing to note is that whatever rule you put first in the
Makefile will be the default rule. So, if we put the fact_tests rule first,
then make will build your test executable. All that compilation for
only five keystrokes. Awesome.

Phony Rules

You can save yourself a lot of trouble by only using the explicit rules
shown above. You can do all kinds of great things if you use just a



comp 161 - lecture notes - 05 - the compiler 10

few more advanced features of Makefiles. The only one I’ll show you
here is phony rules.

So far, all the rules you’ve seen have real targets. You can, however
build rules with non-existent, or phony, targets. The effect is to have
logical rules rather than rules named for targets. The most common
phony rule is one to clean up all the junk left by your compiler and
emacs. This rule is called clean and lets you type make clean to get
back to your source code18. 18 something you typically do before

handing in your work!To clean up our working directory we typically remove all the
object files, our executable and these files that end with t̃hat emacs
creates when it auto-saves files. Here’s the phony rule for this:

.PHONY : clean

clean :

rm -f *.o *~ fact_tests fact_main

The first line tells make that the target clean is a phony. This prevents
a few potential problems. We then note that this rule has no depen-
dencies and that the rule simply runs a familiar remove command. It
should be noted that we’re using the -f option here in order to avoid
error messages when files aren’t found and as a result this command
will also not prompt you when deleting. You’re free to use a different
version of rm in your clean rules.

Another common phony command is all. This command is used to
build all of your executables and is a typical default make rule19. 19 i.e. the first thing in the file

.PHONY : all

all : fact_tests fact_main

This rule is interesting in that there is no rule! Instead we list other
rules/targets as dependencies in order to force make to run those
rules whenever make all is run.

More Advanced Makefiles

You’ll get a ton of mileage out of the simple rules shown here. If
you’re so inclined, you should checkout the make documentation
and the tutorial linked in these notes for some more Makefile tricks
of the trade. For example, Makefiles allow for variables and by using
variables you write one single rule that will work for all your object
compilations. I strongly recommend, but do not require, that you
poke around with more advanced make features as the semester
progresses. At a minimum, we’ll be working with the kinds of real
and phony rules you see in these notes.



comp 161 - lecture notes - 05 - the compiler 11

Compiling and Debugging in Emacs

Using what we know now, you’d find yourself repeating the follow-
ing cycle a lot:

1. open a source document with Emacs and work on some code

2. close Emacs

3. build your test executable

4. if syntax errors are caught when assembling objects, then go back
to 1

5. run tests

6. if tests fail, then go back to 1

You can end up spending a lot of time getting in and out of Emacs.
Thankfully, Emacs lets you compile and run programs from within
Emacs. Even better, if you find errors when you compile from within
Emacs, then Emacs can jump to the code where the first error was
found, then let you keep stepping through the errors. Once you get
used to these new Emacs commands20, then you can save a lot of 20 Write them on your Emacs reference

somewheretime while programming. You’ll want to be sure and have your com-
mands for managing windows and buffers handy when doing this.

Compiling

Compiling within Emacs is very simple21. We first use the com- 21 http://www.gnu.org/software/

emacs/manual/html_node/emacs/

Compilation.html
mand M-x compile. Doing this brings up a command entry field in
the mini-buffer22. The default command is make -k23. You can delete 22 bottom of the window

23 look up the -k option. it’s niceand replace that with whatever you want, but if you setup make all as
your default rule, then you’re good to go; Just press Enter to compile.
If you need to repeat your last compile command, then you can use
the Emacs command M-x recompile. That’s it!

Compiling within Emacs causes the window to split. The compiler
output shows up in the new window along with a report generated
by Emacs. If you have errors, then you can direct Emacs to take you
to them in the relevant source document.

Traversing Errors

Once you’ve compiled code within Emacs, you’re able to use Emacs
to quickly find syntax errors24. There are several commands you can 24 http://www.gnu.org/software/

emacs/manual/html_node/

emacs/Compilation-Mode.html#

Compilation-Mode

use but minimally M-g n will take you to the next error and M-g p
will take you to the previous error. This saves a ton of time scrolling
through text. What’s even better is it opens of files as needed. So if

http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode.html#Compilation-Mode
http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode.html#Compilation-Mode
http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode.html#Compilation-Mode
http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode.html#Compilation-Mode


comp 161 - lecture notes - 05 - the compiler 12

the error is in a file not currently open in Emacs, then Emacs will
open it.

Executing Programs

Once you’ve cleared out any syntax errors from your program, you’ll
probably want to run it or your test executable. To do this within
Emacs we have to pull up a shell within Emacs. That’s right. You can
load a shell within a program started at the shell. Cool.

To pull up a shell use the command M-x shell25. From here you 25 maybe in a new, split window

can run your executable in the usual fashion. When you’re done, exit
will close the shell session. You can then close windows in Emacs as
needed.

More Compiler Options

Our compiler is a very powerful tool. Two key sets of options that
we’ll explore more as the semester progresses are used to optimize
code performance and annotate code in order to more easily debug
and profile it.

Compiler Optimizations

So, your tests pass and your program is, as far as you can tell, work-
ing as intended. At this point we can unleash the compiler and let
it attempt to make our code faster26. Modern compilers are able to 26 http://gcc.gnu.org/onlinedocs/

gcc/Optimize-Options.htmlcarry out common optimizations that can sometimes really boost the
performance of our program. The g++ compiler carries out three lev-
els of standard optimizations. The higher the level number the more
optimizations done by the compiler. The options -O1, -O2, and -O3
turn on the different optimizations. They should be used to compile
objects or executables from source code27. The following demonstrate 27 They’re done by the compiler and so

cannot be carried out at the link stage
of the process

the use of compiler optimizations.

g++ factorial.cpp -c -Wall -std=c++11 -O2

g++ lab3_main.cpp -c -Wall -std=c++11 -O2

g++ factorial.o lab3_main.o -o factorial

Notice that separate compilation gives the the chance to do different
optimizations on different sets of code.

Compiler optimizations effectively rewrite our code such that
the assembly produced by the compiler might not exactly match up
with the C++ we wrote. It’s possible that the behavior of optimized
program might differ from that of the C++ code we wrote. This can
make debugging difficult unless you get the optimized assembly
and then debug the assembly! We’ll typically throw in compiler

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


comp 161 - lecture notes - 05 - the compiler 13

optimizations after we’ve fully tested our code and have turned our
attention to program efficiency.28. 28 Don’t optimize until you’re confident

the program is correct

Compiling for Debugging and Profiling

When we encounter tricky logic errors and runtime bugs in our code
we often turn to debuggers like the program GDB or memory system
checkers like Valgrinds memcheck. When compiler optimizations
don’t seem to cut the mustard and we have to optimize our programs
by hand, then we turn to profiling tools like the Valgrind suite. Both
programs require some special annotations be added to our code so
that they can better communicate their results to us. The compiler
can take care of this for us with the -g option29. This option should 29 http://gcc.gnu.org/onlinedocs/

gcc/Debugging-Options.htmlbe used when object files are compiled and when they are linked.
The following sequence of commands produces an executable named
factorial that is suitable for debuggers and profilers.

g++ factorial.cpp -c -Wall -std=c++11 -g

g++ lab3_main.cpp -c -Wall -std=c++11 -g

g++ factorial.o lab3_main.o -g -o factorial

We can also use the debugger option with our tests. When we’re
optimizing our code with the help of profilers, we might throw in
compiler optimizations as well. It’s generally safer and easier to leave
them out and then toss them back in after we’ve finished our own
optimization process.

http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

	Our Example Program
	The Compilation Process
	Compiling Our Unit Tests
	Putting It All Together
	Using make and Makefiles
	Compiling and Debugging in Emacs
	More Compiler Options

