COMP 161 - Lecture Notes - o4 - The Structure of a
C++ Program

January 13, 2016

We begin our exploration of C++ by considering the high-level struc-
ture of a basic C++ program in the style that we’ll be developing in this
course.

Procedures and Statements

In COMP160, your Racket programs were a collection of definitions,

mostly functions, and this is true of the first kind of C++ program

we’ll be developing in this course. There are several key differences

we need to be aware of though.
Racket functions were PURE FUNCTIONS. They took inputs, pro-

duced an output, and had no side effects. In C++ our “functions”

have the option of taking no input, producing no output, and causing

side effects. They can interact with program STATE VARIABLES or

system I/O DEvVICES. For this reason we'll use a more general term™: *as opposed to function, which is a well

Procedure. defined object from Mathematics
Racket functions were constructed as a series of nested EXPREs-

SIONS. An EXPRESSION has a specific value associated with it and

so we can always SUBSTITUTE the expression for its value®. Order 2 this is how the Racket interpreter
worked. Go use DrRacket’s stepper to

of execution was determined by nesting; the inner most expressions oo
see it in action

were executed first. In C++, a procedure is written as a sequence
of STATEMENTS. STATEMENTS are primarily written for effect, not

for value3, and more or less correspond to a command issued to the 3 However, they are typically built out
of at least a few EXPRESSIONS

4aka an IMPERATIVE
are executed corresponds to the order> they appear on the page. In 5 top to bottom

computert. The order in which STATEMENTS within a PROCEDURE

short, a C++ procedure is a sequence of imperative statements issued
to the computer.

The style of Racket programs we wrote in COMP160 revolved
around the use of pure functions and so it’s called FUNCTIONAL
PrOGRAMMING. The style of C++ programming we’ll begin with
revolves around procedures and imperatives and so we call it Impera-
tive, Procedural Programming.

Main

Every C++ program must have one and only one procedure named

main. The main procedure is, in effect, the program; when you com-

pile your program, the executable that results executes the main pro-

cedure of your program. We did not have such a strict requirement in

Racket®. However, you may have encountered this style when dealing S or bash

COMP 161 - LECTURE NOTES - 04 - THE STRUCTURE OF A C++ PROGRAM

with Universe programs in BSL Racket where it’s typical to write a
main function which invokes the big-bang function.
The main procedure requirement can and will cause a few headaches:

1. Attempting to compile to an executable without a main procedure
results in a long, seeminly cryptic sequence of errors.

2. We'd like to compile and run some tests separate from our main
program. Running tests” requires a main. So most of the time 7any code
we'll need at least two separate programs, and therefore two sepa-
rate files: one for tests and our actual program.

3. In order to test code it must be compiled along with the main that
runs the tests. In order to include it in our main program, it must
be compiled with our main procedure. This forces us to put any
code we want to test in a file separate from our program’s main

procedure and our test’s main procedure8 8 combining test logic and main pro-
gram logic quickly becomes a bad
The result here is that organized, well-tested code requires multi- idea

ple files and will require several different compilation procedures.
Thankfully, we have some tools that will help expedite the process of
compiling and building our programs. So when compiling becomes
time consuming, we can turn to these tools.

Libraries

We'll strive to section off a large chunk of our program code into

files separate from the program’s main procedure. Essentially, we

want to build LIBRARIES of code that can then be used by the main

procedure?. Libraries are a vital part of software development for 9 This is analogous to the teachpacks

two reasons: you're used to from COMP160

¢ They allow us to more easily test our code outside of the normal,
expected execution of the program by separating code from the
main procedure.

* They allow the library code to be reused in other programs with-
out copying and pasting from one program to the next.

The C++ libraries we’ll be developing make use of a two file
file format: a HEADER FILE and the IMPLEMENTATION FILE. The
HEADER FILE contains documentation and declarations of proce-
dures™. It tells you and the computer what’s in the library and how " and eventually other things like
it may be used, but does not tell you or the computer how the li- structures
brary code actually works. The IMPLEMENTATION FILE contains the
complete definition of the library; it tells you and the computer how

the library does what it does. Another way to look at it is that the

COMP 161 - LECTURE NOTES - 04 - THE STRUCTURE OF A C++ PROGRAM 3

HEADER simply provides a description of the interface provided by
the library. By physically separating the library’s interface from it’s
actual implementation we give ourselves the chance to swap in dif-
ferent’* implementations later on. The power and impact of this idea
cannot be overstated.

A more immediate and practical result of this two file style is
that once you've created a header, you can produce code that can be
compiled to an intermediate, non-executable stage called object files.
Using the header only, the compiler can at least recognize that library
procedures are being called more or less correctly. So compiling to
object files gives us an opportunity to quickly and easily fix typos
and syntax errors prior to debugging logic errors. If you stick to this
regime, then you'll end up debugging in lots of small chunks rather
than one giant debug session. The former tends to be much less
frustrating than the later.

C++ namespaces

The more we draw on libraries of C++ code, the more likely it is that
we’ll need or want to name one of our procedures the same thing
as a procedure form another library. If the SIGNATURE™ for our
procedure is different from existing definitions, then it’s not a big
deal. We can simply ovERLOAD"3 the procedure name. However, it
may very well be the case that we’d like to provide a new definition
for an existing name and signature. We could ovERWRITE™ the
other definition, but this is generally frowned upon’>. Sometimes
we actually want both definitions available as they could each be the
best choice in different scenarios. For example, one might work best
for small sets of data where the other works best for large sets. In
this case, we need a way to differentiate the two definitions of the
procedure. For this we use namespaces.

The C++ namespace is a way to logically group definitions within
a named space. Last names, or family names, act as a type of names-
pace for people. My wife and my sister-in-law are both named Sarah.
If I'm talking about my wife, I can say “Sarah Mayfield” and remove
any ambiguity. If I need to talk about my sister-in-law, I can talk
about “Sara Wells”1°. So, namespaces allow us to effectively attach
secondary names to procedures. In fact, you can put names spaces
in namespaces just like we can have middle names or even num-
bers. I'm actually James Logan Mayfield IV. My son is James Logan
Mayfield V. The numeral part of our names can act as a namespace
to differentiate the two of us. Once we put C++ definitions within a
namespace, then we can always attach the namespace specifier to that
name when we use it in order to unambiguously refer to a definition.

" presumably better

> number and types of inputs and type
of output

'3 provide multiple definitions with
different signatures
4 replace an existing definition

5 until we get to Object-Oriented
Programming

6 Jgnore the different spelling. We're
talking about verbal communication

COMP 161 - LECTURE NOTES - 04 - THE STRUCTURE OF A C++ PROGRAM

You typically don’t call people by their complete names. Instead,
we let context differentiate people more often than not. If I'm at
home and I say Sarah, then the default assumption is that I'm work-
ing in the Mayfield namespace and I'm talking about my wife. We
can do the same thing with C++. A using namepspace statement can
be used to declare a default namespace. As many of the build-in C++
libraries use the standard'” namespace, we’ll often make use of the 7 or std
using namespace std; statement in our procedures that utilize those
libraries. This saves us from having to call library code by it’s “full
name”.

When definitions aren’t placed in a namespace, then they go to the
global namespace. It’s often considered bad practice to put definitions
in the global namespace. Over the years software engineers have
learned that it tends to cause problems as programs grow. We could
probably get away with it in this class as the size of our programs
are small by industry standards. However, let’s start out with good
habits and not ignore industry best practices. We’ll always declare
our library code within a namespace.

Unit Tests

The style of testing you learned in COMP16o0 is called UNIT TEST-

ING. In unit testing you write lots of little tests for the small parts8 *® units
of your program. Our units are procedures, so this means we want

to test each procedure just like we tested every function in Racket.

Unlike in Racket, we’ll be putting all our tests in a separate file from

the code it’s testing. The reason is highly practical: we don’t want to

include the compiled test code with the finished product. Our users

should not need to rerun our tests'. Furthermore, the compiled tests 9 nor will they probably want to
will cause the size of the executable to go up. The tests are for us, the

developer, not the user. So, we put them somewhere else so that we

can exclude them from the finally, “shipped” product.

The File Struture of a C++ Program

Hopefully you're starting to get a clear picture of the the different
files used for organizing our C++ programs. Just to be certain, let’s
recap what we’ve talked about. Minimally we’re looking at:

1. One file containing the program’s main procedure definition.

2. Three files per library: One header, one implementation file, and
one file containing unit tests for the library procedures.

Libraries typically group procedures by logical purpose. In addi-
tion to avoiding name conflicts with other libraries, we’ll often use

COMP 161 - LECTURE NOTES - 04 - THE STRUCTURE OF A C++ PROGRAM 5

namespaces for fine-grained, logical grouping within a library. It’s
not unlikely that we’ll want to write several libraries for one project.
This means that the number of files in or project can quickly grow
into the double digits. We have lots of tools to help us manage this
complexity, and so we’ll embrace this organizational style because it
leads to reusable code that is easier to test and maintain®°. A key goal in software engineering
Even though all of our files contain C++ code, we use two different
file extensions: one for header files and one for all other files. Our
library header files should all have the file extension h. All other C++
files have the extension cpp. For example, in class and lab we’ll look
at a program containing the following files: factorialh, factorial.cpp,
fact_tests.cpp, lab3_main.cpp. The first two files make up the factorial
library which is tested in the third file. The final file contains the
main procedure for our program. Now that we know how and why
we spread our code across multiple files, we need to look at how we
can use and direct the compiler to glue it all together into a single
executable and how to manage this as our usage of libraries

Library Boilerplate

All the libraries you'll write have some basic boilerplate code that

goes in them.?'. Much if this boilerplate is used to connect headers to % You can find all this code in the
factorial library used in lab 2 and

implementations and libraries to the code that uses them. ! >
discussed further in lecture notes 4

There is one thing we put in every file that is not C++ code: a
file header??. File headers are comment blocks meant to inform the 2 different than a header file!
human reader. Minimally, your headers should contain two pieces
of information: the name of the author, and a brief description of the
file contents and purpose. Leaving the file header out won’t break
your code. It’s just bad style. Remember, code is read by humans first
and computers second. These headers are meant to give programs
some direction as to the contents and purpose of the library so that
they can better read and interpret the C++ code.
The library header file (the .h file) always contains two key pieces
of code: define guards and a namespace declaration. The define
guard has three parts: #ifndef , #define , and #endif . We read the
as “pound”. The ifndef as “if n def”, which is short for “if not de-
fined”. The rest are fairly self explanatory. We’ll need to #include
our library header file in multiple source files>3 and without these 3

=

guards, the compiler will think we’re trying to re-define some pro- Library Implementation
cedures when it encounter a repeated include and complain about 2. Library Tests

multiple definitions. The namespace declaration places our proce- . Program main file

(e8]

dure declarations within a namespace. Notice that the define guards
surround all the library code and that function declarations will go
within the namespace block delimited by the curly braces; your pro-

COMP 161 - LECTURE NOTES - 04 - THE STRUCTURE OF A C++ PROGRAM

cedure declarations go within these two code elements.
To connect the header declarations with the implementation def-
initions, the library implementation file must include the library
header with a #include®* statement at the top of the file, before the 2 “pound include”
actual definitions. By doing this, we’ve directed the compiler to glue
together the what and how of our code. This is important because
to use a library in other files we only include the header, the “what”
part of the library. This allows the compiler to recognize correct us-
age of library code, but doesn’t include the details for executing cor-
rectly used code. The inclusion of the header with the implementa-
tion ensures that when the complete program compilation is carried
out we’ll know the exact definition for all the library procedures.
The test files uses library procedures and code from the gtest
library. So, we need to #include both out library header and the gtest
library header at the top of this file. Generally speaking, you should
write a test case for every procedure. The one exception to this rule
might be combining tests for helper procedures with the tests for the
procedure their helping. In this case, the best thing to do might be
to write one test case for the whole thing, but split the tests out by
procedure®>. We’ll talk more about testing soon. % you see this in the factorial library
You're going to write a lot of libraries, so get used to this code. An from our last lab
industrious student might take a crack at writing a bash script to au-
tomatically generate starter files for libraries. Such a script might take
the library name as an input and then produce these three files with
the boilerplate all filled in. Or you can do a lot of typing, copying,
and pasting at the start of every program you write. It’s your time so
its up to you.

	Procedures and Statements
	Libraries
	Unit Tests
	The File Struture of a C++ Program

