
COMP 161
Lecture Notes 01
Programming
January 8, 2018

This course is not your first look at programming. In these introduc-
tory notes we look at how this course differs from your experience in
COMP160 and how it builds off of your experiences programming in
BSL Racket with Dr.Racket. You’ll also get a brief overview of tools
you’ll use to craft your programs in this course.

What’s a Program?

The title of this course is Introduction to Programming. You’re probably
thinking, “we just had a semester’s worth of programming, so what’s
this?” Well, yes, you know enough about programming to write code
to solve pretty much any problem you encounter. However, you don’t
know enough to stay out of trouble nor do you have practice transfer-
ring your programming knowledge from one programming language
to another. In this course we transfer knowledge from Racket to C++
and then expand on that knowledge with new computing fundamen-
tals.

The word program itself implies a plan or a schedule. To see the
plan in a Racket program you had to think like the Racket Virtual
Machine1 and decide the order in which actual computation was 1 or the Dr.Racket stepper

enacted. What if instead, you the programmer set the plan? From
this we arrive at the perspective2 of programming in which we issue 2 or paradigm

imperative statements to a computer to be executed in the order we
specify. Groups of statements can be written as procedures. Thus, we
call this style of programming Imperative, Procedural programming.

Imperative, procedural programming will force you to think much
more explicitly about the machine that is running your code than you
did in the functional style used in COMP160. So, one of the major
goals for this class is to understand this new programming paradigm
and begin comparing and contrasting it to the functional style. In
doing so, you can better understand them both. Let’s be clear. You
are by no means starting over. We can and will leverage everything
we learned about computation and programming in COMP160. We
just need to revisit the fundamental ideas and programming method-
ologies we learned about programs and computation to fit within
our new paradigm and our new language. Before we can do that, we
need to find a new set of tools for replace Dr.Racket.



comp 161 lecture notes 01 programming 2

Programming: Science, Engineering, and Craftsmanship

Programming is part science, part engineering, and part art. You’re
beginning to understand the science, but its time we think about the
art and engineering and take a broader view of the craft of program-
ming. Plumbers, carpenters, and mechanics all have a standard set
of tools they use and shared set of goals for the things they do. They
all know what good craftsmanship3 looks like and how to evaluate 3 craftsperonship

the quality of their work and the work of others. The same is gener-
ally true of programming. In order to program you need a specific
set of tools. When you’re programming, you have a specific set of
goals you’re trying to achieve in order to produce a high quality
program. It are these tools and these goals that you need to start
thinking about and integrating into your program design process. We
should, of course, begin with the goals as they are the end to which
programming tools are a means.

The Problem

In general, we can say that a program begins well before the first
line of code is written. It begins when someone, identifies a problem
and decides to solve the problem using computing technology4. Now, 4 we’re just thinking software, but

hardware and hybrid systems are
options as well

sometimes the problems are as straight forward as, “design a game to
make me lots of money”, and sometime they’re less clear like, “How
do we enhance the quality of life of people suffering from dementia?”
Once someone decides they’re going to use computation to model
and solve a problem, they must identify the platforms on which they’ll
launch their solution.

The Platform

When we say platform we generally are thinking about the hardware
and operating system layers on which our software runs. However,
these days software itself is a viable platform. Some possible plat-
forms are:

• Smartphones: Apple, Android, Windows, Blackberry, etc.

• Wearable, embedded systems: Google Glass, smart watch, etc.

• PC Computer GUI or CLI: Windows, Mac, Linux, etc.

• Laptop Computer GUI or CLI: Windows, Mac, Linux, etc.

• Tablet: Android, Apple, Windows, etc.

• Gaming Console: XBox, Playstation, Steam Box, etc.



comp 161 lecture notes 01 programming 3

• Web Browsers: Chrome, Firefox, etc.

• Virtual Machine: Java, Racket, CLR (Windows dot net architec-
ture), etc.

Writing apps for multiple platforms is more possible today than
it has been in the past, but, on the other hand, there are arguably
more viable platforms than in the past, so things aren’t that much
easier on that front. In this course, we’ll develop on one platform: the
Linux Command line. More specifically, we’ll write code to run on
the department’s Ubuntu5 Linux6 server. 5 http://www.ubuntu.com

6 http://en.wikipedia.org/wiki/LinuxFor most of you, this is likely to be a new computing environment
on two fronts. First, you’ve probably never seen or maybe even heard
of Linux. Even amongst those of you that know about Linux, it’s
likely you’ve never really worked at a Command Line Interface (CLI).
The command line interface uses no windows, no mouse clicks, just
text-based commands. Working at the CLI is roughly equivalent to
working at the interactions window of Dr.Racket. You type com-
mands at a prompt, the computer executes them, and usually prints7 7 DrRacket always prints. The CLI does

not.some results back at the prompt. The CLI pre-dates Graphical User
Interfaces8, but is still widely used in many computing environ- 8 GUI

ments. It is also usually hiding in the background when GUIs are
installed and as such is a viable choice for many projects. In short,
the CLI is still alive and kicking and you’ll gain a lot from knowing
how to work with it. The first thing we’ll do in this class is be sure
you’re able to work and survive at the CLI9. 9 survive = basic working knowledge

not ninja CLI hacker skills.

The Criteria of Quality

So we have a problem to solve and a platform on which we’ll deploy
our computational solution. Or, we have an end in mind and need to
start thinking about a means to achieve that end. However, before we
start hacking away at some code we should reflect on what it takes
to write good code10. A craftsman tries to produce quality work and 10 If your goal is to write bad code,

you’re in the wrong placeknows how to judge their work for quality. Programs are written in
order to be11: 11 In order of importance!

1. Correct

2. Simple

3. Efficient

Thus the quality of a program12 can be evaluated on these criteria13. 12 and its programmer
13 We could be more detailed, but odds
are if you meet these criteria, any other
more detailed criteria will be covered
as well. Alternatively, you should learn
to work around these simple goals and
only after you’ve gain experience in this
realm, explore more involved criteria of
quality programs.

If a program does not correctly carry out its intended task, solve
its specified problem, then it’s not very good. Until the program

http://www.ubuntu.com
http://en.wikipedia.org/wiki/Linux


comp 161 lecture notes 01 programming 4

works correctly, then we don’t even need to consider any other mea-
sure of quality. This sounds simple enough, but program correctness
is a very tricky thing. First off, correct might be subjective and it
can be difficult to clearly identify what perfect correctness will be.
Furthermore, when we do know what constitutes correctness, it is
nearly impossible to guarantee absolute correctness. As such, good
programs more often than not exist in a state of mostly correct. This is
clear from the fact that even the best software needs to fix bugs and
update itself. If absolute correctness is unachievable, what then is a
programmer to do? First and foremost, programmers need to identify
the level of correctness a user can expect and try to guarantee at least
that much. This means clearly identifying and documenting the specifi-
cations for the program in such a way that a correctness benchmark can be
set and tested. We must also plan for the unexpected bug to occur and
develop code that is easily maintained over the life-time of the pro-
gram. This means developing code that is not just machine readable
but human readable.

Programsshould be simply and elegantly written so that when bugs
appear, you can easily return to the code to fix them14. Program 14 Keep in mind here, we’re not really

talking about the small programs
you’ve written so far. Yes, even those
projects from last semester are small by
program standards. We’re talking about
millions of lines of code.

code is more often read by human beings than it is computers, and
as a written document should be judged on those standards. Your
code should have structure and style and be easily read by other
programmers. As you can imagine, simplicity is subjective and can
be hard to evaluate. None the less, there are well accepted styles of
programming out there upon which we can choose to evaluate our
programs15. Simplicity is not only a boon to correctness, but a boon 15 choose a normal when no universally

accepted normal can be foundto business. Well designed and simply written code is often easy
to extend. New features are easier to add to programs that exhibit
well established metrics of good design16. Simple code is also often 16 the kinds of things the HtDP design

recipe gives youfaster as it cuts out unnecessary program logic and avoid repetition,
and when its not fast enough, its simplicity makes it easier to reason
about and thereby easier to optimize. And this brings us to goal
number three, efficiency.

Sometimes when you focus on writing correct and simple code,
you get a program that performs as well as it needs to on the target
system. On the other hand, your program may often run too slowly
or use up too much memory. Put anther way, it may make inefficient
use of the computation resources provided to it by the computer.
When this is the case17 we must optimize the resource usage of our 17 and only when this is the case!

program. This often means trying to make it run fast, i.e. make better
use of the CPU cycles, or use less memory. Of the three program-
ming goals we’ll be looking at, this is the newest one for you to think
about. We’ll need to learn how programmers talk about efficiency
and how we measure the efficiency of our code. Eventually, you’ll



comp 161 lecture notes 01 programming 5

learn how to build efficiency concerns into your initial designs and
specifications. This often boils down to knowing and deploying effi-
cient algorithms from the start rather than optimizing inefficient code
after the start.

Putting this all together. We have a problem, an idea of how to
model and solve that problem computationally, and criteria for eval-
uating the computational solution. Now we need to choose the right
tools for the job18. 18 Platform often dictates or restricts

your choice of tools. At which point,
you have a new problem. . . building the
tool or platform you want!The Tools

DrRacket is a one-stop shop for all your programming tools needs.
Such programs are called Integrated Development Environments19. You 19 IDE

will not be using an IDE in this course20. Instead we’ll look at an 20 we’ll come back to IDEs in COMP220

and COMP210established set of industry tools and learn the basics of making them
work together. This deconstructed view of the programming tool
chain will hopefully give you a better appreciation for the tools that
are out there and the different systems tucked away inside IDEs like
DrRacket. All the tools you’ll be using see wide use today and are
viable options of program development.

The Essentials

At a minimum you need a programming language21, text editor 21 yes. languages are tools

to write the code and either an interpreter to execute the code or
a compiler to build an executable program for your platform. You
know what a programming language is and that we’ll be using C++
in this class, so we’ll focus on the other two tools.

Text editors do what the name implies, they edit text. They do not
process words. The difference is that text editors don’t really get into
presentation details and most importantly do not encode the text in
anything other than a plain text encoding22 Windows Notepad is a 22 Probably ASCII. Possibly Unicode.

text editor, but not particularly well suited for programming. Good
text editors for programming are programmed with information
about the language you’re using and provide help and cues to ease
the task of writing code. DrRacket’s definitions window color coded
text, helped match parenthesis, fixed indentation to meet Racket
style, and much more. These are the types of things we need our text
editor to do. For this class, you’ll learn to work with GNU23 Emacs24. 23 http://www.gnu.org/

24 http://www.gnu.org/software/

emacs/
Other options you might explore include25:

25 some of these are platform dependent• Vim26

26 http://www.vim.org/

• Sublime Text27 27 http://www.sublimetext.com/

• Notepad++28 28 http://notepad-plus-plus.org/

http://www.gnu.org/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.vim.org/
http://www.sublimetext.com/
http://notepad-plus-plus.org/


comp 161 lecture notes 01 programming 6

• Atom 29 29 https://atom.io/

Feel free to explore these and other options, but Emacs is the only
supported text editor for this course30. 30 Don’t expect answers to non-Emacs

questionsInterpreters are installed on the platform and can read and execute
code on a line-by-line basis. They run the program as they read the
code. On the other hand, a compiler translates the code to another
format, typically a fully executable file31. These days it’s not uncom- 31 or something that’s interpreted

mon to see a combination of the two. A just-in-time32 compiler will 32 JIT

interpret some code but compile performance critical code for faster
execution. Racket uses a JIT system. In this class we’ll use a tradi-
tional compiler system, namely the GNU GCC33 compiler g++. Other 33 http://gcc.gnu.org/

notable C++ compilers are:

• LLVM and clang 34 34 http://clang.llvm.org/

• Visual Studio and CLR 35 35 http://msdn.microsoft.com/en-us/

vstudio/hh386302

Programs quickly grow to involve multiple files. The CLI com-
piler we’ll be using is pretty good at helping your compile all those
files quickly with a minimum number of commands. However, it
is more common to use a special program building tool to manage
the complexity of the compilation process. The build tool make36 is a 36 http://www.gnu.org/software/make/

manual/make.htmlvery flexible tool and widely used to manage the problem of making
programs. Make is itself a special purpose programming language
and interpreter. To use make we write a small file called Makefile that
the command make then reads and interprets. So, unless you like to
enter ten commands when one will do, make is really awesome.

Tools for Correctness

A language, an editor, and a compiler37 will get you to a working 37 and build management system

program. Now we need to address the correctness of that program.
Good languages often provide you with language features specifi-
cally designed to help you write correct code38. But, practiced pro- 38 assertions and exceptions are two

examplesgrammers also make use of several tools for helping reach their cor-
rectness goals. The most common are:

• compilers

• debuggers

• memory checkers

• code testing frameworks

Compilers are the first line of defense. Basic compilers will catch
deviations from the language grammar39. Unlike your professors, 39 syntax errors

https://atom.io/
http://gcc.gnu.org/
http://clang.llvm.org/
http://msdn.microsoft.com/en-us/vstudio/hh386302
http://msdn.microsoft.com/en-us/vstudio/hh386302
http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html


comp 161 lecture notes 01 programming 7

the computer does not40 infer your intentions from your code. In 40 and should not

addition to guaranteeing the grammatical correctness of your code,
a good compiler will also warn you when you do something that
might lead to problems. We’ll also see that compilers can effectively
annotate our code such that other tools can more effectively analyze
it. In particular, g++ can add special flags to the finished product that
enable debuggers and profilers to give us better reports about our
program’s execution behavior.

Grammatical correctness is a pretty weak level of correctness.
Every programmer has written a program that compiles and runs
but produces incorrect results41 or crashes at run-time42. A debugger 41 logic errors

42 run-time errorsallows programmers to step through program execution one step43

43 or programmer specified skipsat a time while keeping an eye on program data. DrRacket had a
stepper that allowed for this. For stepping through and debugging
our C++ programs, we’ll explore the GNU debugger gdb44. 44 https://www.gnu.org/software/gdb/

Run-time errors can often be the result of running afoul of the
allowed usage of the computer’s memory system. To correct these
mistakes, we use programs that observe the memory usage patterns
of our program and generate detailed reports of where something
goes awry. The standard tool for this in Linux, the tool we’re going
to use, is memcheck45. The memcheck tool is a part of the Valgrind46 45 http://valgrind.org/docs/manual/

mc-manual.html
46 http://valgrind.org/

family of code analysis instruments.
Where all the previously discussed tools were programs in their

own right, testing frameworks are just libraries of code written to
more easily enable standard program testing regimes. In COMP160

you learned to do unit-tests and we’ll continue to use them in this
course. These tests look at individual units of the program and test
for expected functionality and behavior. In this class we’ll make use
of a C++ unit testing framework call gtest47 developed by Google. 47 https://code.google.com/p/

googletest/wiki/Documentation

Tools for Simplicity

There’s a general lack of tangible tools for simplicity48 checking re- 48 in the sense that we’re using this
wordally. The best tool to check for sufficient simplicity is your fellow

programmer. Different programming communities often agree upon
what good, simply written coding style looks like. These stylistic
guidelines ensure that code looks and reads consistently within the
community and is thereby simple to the members of the commu-
nity. So, one of the best things you can do is have your code peer-
reviewed49 for its style50. We’ll adopt some basic style guides for 49 We need a writing center for code!

50 Don’t have your peers write and
debug your code for you. That’s called
academic dishonesty!

this class and will go over them as we learn C++. In the meantime,
you should take a look at what professional style guidelines are like.
Google has their C++ style guide published on the web along with
style guides for other languages they use51. There are programs 51 https://code.google.com/p/

google-styleguide/

https://www.gnu.org/software/gdb/
http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/
https://code.google.com/p/googletest/wiki/Documentation
https://code.google.com/p/googletest/wiki/Documentation
https://code.google.com/p/google-styleguide/
https://code.google.com/p/google-styleguide/


comp 161 lecture notes 01 programming 8

called linters that scan for suspicious looking code, but we won’t play
with them in this class. Google has an in-development linter/style
checking tool called cpplint. You might check it out, it’s with their
style guides.

Tools for Efficiency

Once the code works and looks good, it’s often time to try and speed
it up or lower its memory footprint. In most cases, there are no tools
that can make your code more efficient for you. You’ll need to do
your own optimization. Smart programmers involve real data about
program performance in their optimization process52, so many of 52 Check out: https://www.facebook.

com/notes/facebook-engineering/

the-mature-optimization-handbook/

10151784131623920

our tools are used to gather data that allows us to make informed
decisions about optimizing our code.

• Compilers

• Mathematical analysis

• Memory system profilers

• CPU profilers

There is one tool that will auto-magically make53 your code faster: 53 or attempt to make

the compiler. Modern compilers can carry out basic to sophisticated
transformations on common code patterns in order to improve code
performance. This is wonderful as we generally just need to focus on
big picture logic and not low-level optimization details. However, this
process effectively re-writes your code, making it harder to debug
so compiler optimizations are often something we don’t introduce
until we’re confident that our program is correct enough. Compiler’s
can only do so much for you though. If you’re code is inherently
inefficient, then it’s not going to fix that for you. This means we
need to make good, efficient coding choices before we even turn the
compiler loose.

Using a standard form of mathematical analysis54, we can guar- 54 Asymptotic analysis or “Big-Oh”

antee55 the worst case behavior of our code under some fairly rea- 55 as in mathematically prove!

sonable assumptions. Once we know we’ve make sound algorithmic
decisions and have acceptable upper-bounds on program efficiency,
then we must delve down into reality as our assumptions are reason-
able but simplify some key details. To see what happens to our code
on hardware we must run it and use a profiler to gather performance
metrics about its execution. For the types of programs we’re looking
at, we need to know how efficiently our program makes use of the
CPU and of memory system.

Valgrind provides us with a CPU profiler called callgrind56. This 56 http://valgrind.org/docs/manual/

cl-manual.htmlprofiler attempts to count how often each procedure is called and

https://www.facebook.com/notes/facebook-engineering/the-mature-optimization-handbook/10151784131623920
https://www.facebook.com/notes/facebook-engineering/the-mature-optimization-handbook/10151784131623920
https://www.facebook.com/notes/facebook-engineering/the-mature-optimization-handbook/10151784131623920
https://www.facebook.com/notes/facebook-engineering/the-mature-optimization-handbook/10151784131623920
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html


comp 161 lecture notes 01 programming 9

where in the code it’s called. From this we can begin to understand
what code is running most often and where we can get the most
bang for our optimization buck57. It should be noted that to profile 57 Make the common case fast

the CPU we often count the things that are executed and not how
long they take to execute. We’ll come back to this. For now, you
should think about why that might be a good idea.

Valgrind also provides us with a memory system profiler called
cachegrind58 and another called massif59. These tools let us look at 58 http://valgrind.org/docs/manual/

cg-manual.html
59 http://valgrind.org/docs/manual/

ms-manual.html

different parts of the memory system60 and determine how often

60 the cache and heap respectively

we’re using them and if we’re using them efficiently.

Other Tools

The final, commonly used tool, that we’re likely to play with is a
Version Control System61 called git62. You hopefully have picked up 61 VCS

62 http://git-scm.com/on the possibility that real programs have long life spans. You write
some code then fix somethings and optimize others. In professional
settings in particular, it is important to keep track of code that results
in the last, stable piece of software you developed. Version control
systems effectively let you take snapshots of your code and then do
things like jump back to a previous snapshot or merge new code
with an existing snapshot. They also enable easy off-sight backup in
case the computer you’re working on goes kaput and you lose your
code63. 63 checkout http://github.com

Tool Wrap-up

That’s a lot of tools. We’ll just barely scratch the surface of what most
of them can do. Our goal is not to master these tools but to recognize
that they’re there and how they are used to develop better programs.
If you come at this from the other direction, their very existence and
functionality sheds light on what matters to practiced programs.
Programmers encounter problems with developing good64 code and 64 correct, simple, and efficient

these are the programs they developed to solve their problems. So
even if the types of programs we write in this and other classes don’t
really need these tools, we can rest assured that some day we’ll bump
in to the exact kinds of problems these tools were developed to solve.
With that in mind, let’s revisit the tools we’ll be putting to use in this
class:

1. Platform: Linux CLI

2. Language: C++

3. Text Editor: Emacs

4. Compiler: g++

http://valgrind.org/docs/manual/cg-manual.html
http://valgrind.org/docs/manual/cg-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://git-scm.com/
http://github.com


comp 161 lecture notes 01 programming 10

5. Build Automation: make

6. Unit Testing Framework: gtest

7. Debugger: gdb

8. Memory Checker: valgrind memcheck

9. Efficiency Analysis: mathematics. asymptotic analysis.

10. CPU Profiler: valgrind callgrind

11. Memory Cache Profiler: valgrind cachegrind

12. Stack and Heap Profiler: valgrind massif

13. VCS: git

Finally, one of our best tools in our tool box is our fellow program-
mer. Programming is, more often than not, something done by a
community of like minded individuals setting out to solve some
problems. Feedback from your programming community can really
help improve your code and make you a better programmer.


	What's a Program?
	Programming: Science, Engineering, and Craftsmanship
	The Tools

