
Comp160
Lab 6
Spring 2018

In this lab you’ll be working with itemizations. These are covered
in Section 4 of the text. Of particular importance is Section 4.6 as it
covers the application of the design recipe to itemized data. You’ll
also be called on to work with World Programs. If you need or want
a refresher on the structure of a World Program, then refer back to
Section 3.6.

Lab 6

From here on out your main goal is to practice the systematic design
and development of functions and programs through the application
of the design recipe and iterative refinement. If you’re arriving at
finished definitions by some means other than the recipe, then you’re
doing it wrong. Your code should not only do what it’s supposed to
do but should, in its logic, exhibit a reasoned and explainable struc-
ture that is consistent with known best practices in programming.
You can achieve this through the design recipe. Practice and perfect
the application of the design recipe now even if you think you don’t
need it. You can choose to use it or not use it in the future. You’ll also
be tested on the recipe, so there’s that.

1. (Enumerations) Start with Exercise 50 and Exercise 51.

For these exercises you already have a data definition for an enu-
meration, TrafficLight, and a fully designed and implemented func-
tion on that enumeration, traffic-light-next, ready to go. Exercise
50 asks that you finish testing traffic-light-next and exercise 51 has
you put this function to use in a world-style animation program.
You already have the “WorldState” definition, TrafficLight, and
the clock-tick event handler function, traffic-light-next. You should
only need design a draw-event handler function and then create a
main to through which you’ll kick start big-bang1. 1 Review 3.6 or the squish program if

you need a refresher on setting up the
main functionDiligently follow the design recipe to create your draw-event func-

tion. With enumerations we have something to do at each step
of the recipe; don’t skip anything. If you’re not sure how to pro-
ceed at any one step of the recipe or if you’d like me to check your
work, ask for help. Be certain to hit Run after each step of the pro-
cess to check that you haven’t introduced any syntax errors.

2. (Intervals Warm-up) Before moving into intervals, review and
check your understanding of interval notation by doing Exercise

http://htdp.org/2018-01-06/Book/part_one.html#%28part._ch~3aintervals-enums%29
http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3adesign-itemization%29
http://htdp.org/2018-01-06/Book/part_one.html#%28part._.D.K._sec~3adesign-world%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._cond2%29%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._cond3%29%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._cond4%29%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._cond4%29%29


comp160 lab 6 2

52. Write you answer as a comment in your program. Label it and
place it below your traffic light program.

3. (Intervals) The first edition of HTDP comes along with a set of
practice problems. You can find them here.2 We’ll use this one 2 These problems come with solutions

but the solutions don’t show you
how you can arrive at them through
adherence to the design recipe which is
ultimately more useful to you.

from section 4 to practice intervals.

A manufacturing company measured the productivity of its workers
and found that between the hours of 6am and 10am they could
produce 30 pieces/hour/worker; between 10am and 2pm they could
produce 40 pieces/hour/worker; and between 2pm and 6pm they
could produce 35 pieces/hour/worker.

Develop a function that takes an hour of the day between 6am and
6pm, in twenty-four hour format, along with the number of workers
and computes the total number of pieces produced during that
hour.

Work on diligently following the design recipe. You’ll need to
start this problem from step 1 by writing a data definition. The
information at the core of this problem is the current Time. It needs
defining as data in our program. It is clearly an interval as it’s
numerical data broken down into ranges of values. Write a data
definition for Time and proceed on from there. Once again, run
your program after every step of the recipe to check for errors and
if you’re not sure what to do with a step or want some verification
that you’re proceeding on track, ask for help.

At this point you’re done with lab 6. Print your work and turn
it in. Hopefully you have some time left in lab. If you do, then I
recommend you use that time to practice function design and check
with me to see if you’re properly working the design recipe process.
Check below for some recommended activities.

Study for the next Exam

On Wednesday you have an exam over the design of basic func-
tions. That means no itemizations which means information that
can be easily represented with built in data types: strings, numbers,
booleans, and images. This also means no conditionals necessary3. 3 you might,however, choose to use

them to handle boolean valued func-
tions even though its not strictly needed

An excellent way to study is to walk through the design recipe pro-
cess using functions like those seen in Section 3.2. Don’t be afraid to
redesign these functions if you’ve seen them before. You should be
able to explain every bit of the final product in terms of the design
recipe.

If you’re looking for something more or something different, then
here are a few more practice problems. The first few will work your
knowledge of boolean valued functions, a.k.a. predicate functions, and

http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._cond4%29%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._cond4%29%29
http://htdp.org/2003-09-26/Problems/
http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3afinger-design%29


comp160 lab 6 3

operations. I recommend you attempt to complete them without
resorting to conditionals or if expressions. Instead, you should use
boolean operations like and, or, and not. Even better, do them both
ways.

• Design a predicate function that checks to see if a number is a
multiple of 5. (Hint)

• Design a predicate function that checks if a number is a multiple
of 3 or a multiple of 7, but not a multiple of both.

• Design a function that takes two images and determines if the first
contains at least half as many pixels as the second.

• Design a function that draws a bullseye image composed of three
circles a la the Target logo. Users should be able to specify the
color of each circle.

Looking Ahead

If you’re feeling good about the design recipe and would rather work
more with itemizations, then start working your way through Section
4.7. This section introduces you to Finite State Machines, a funda-
mental idea in computing and one that is closely tied to itemization
based design.

https://docs.racket-lang.org/htdp-langs/beginner.html?q=remainder#%28def._htdp-beginner._%28%28lib._lang%2Fhtdp-beginner..rkt%29._remainder%29%29
http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3aworlds-more%29
http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3aworlds-more%29

