
Comp160
Lab 5
Spring 2018

For this lab you’ll mainly be working with and extending a program
from the book in order to practice the design recipe and good program
design habits.

The Movie Theater Profit Program

In Section 2.3 of the book you are presented with a problem about
exploring how changes to the ticket prices at a local movie theater
affect the theater’s profit. Go ahead and find the problem in the book
and give it a read.

Now that you’ve read it, let’s get to work.

1. The problem discusses five key pieces of information: the ticket
price, the number of people that attend a movie, the amount by
which the owner changed the ticket price, the fixed cost to show
a movie, and the variable cost to show a movie. For the program
given in the book, each one of these pieces of information is repre-
sented by a BSL number. Write data definitions for each of these
pieces of information.

2. Not all BSL numbers have a reasonable interpretation as informa-
tion in our movie theater problem. For example. BSL allows for
complex and imaginary numbers but such numbers make no sense
in the context of this problem. For each of your data definitions,
add a comment on the kinds of BSL numbers that can and can-
not be reasonably interpreted as the kind of information that is
covered by the definition. Use examples to illustrate the distinc-
tion. At the top of the definition window, below your file header
information, briefly comment on what reasonably interpreted means
to you for this program. Are there numbers that don’t fit your
definition of reasonable but might fit someone else’s?

Following the problem is a four function program that can be used
to compute the profit for a given ticket price.

3. Copy the four function definitions into the definitions window.
Press run to be sure that DrRacket reads the code as correct and
that nothing is out of place.

4. Complete Exercise 27 and Exercise 30
1. If a constant is the value 1 Review section 2.4 if you’re stuck or

confused here.

http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3acomposing%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._fun6-constant%29%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._constant1%29%29


comp160 lab 5 2

corresponding to one of your data definitions, then place the con-
stant definition beneath the data definition and name the constant
accordingly. Otherwise, come up with a data definition corre-
sponding to the constant and write it above the constant definition.

Notice that the function profit makes use of the functions cost and
revenue which in turn make use of the function attendees. We call the
function profit the main, or top-level, function as it solves the main
problem we set out to solve. It is the function our theater owner
would use to figure out how to maximize his profits. The functions
cost and revenue are helper functions2 for profit and attendees is a 2 a.k.a. auxiliary functions

helper for revenue and cost.
Section 3.3 of your text describes domain knowledge. It’s a short

section. Go read, or re-read, it.

Not let’s see if we can’t use the idea of domain knowledge to
better understand the where and why of these helper functions and
how it might help us to achieve a one task per function ideal.

5. This program draws on domain Knowledge from the theater
owner and from the study of business in general. Below the
header at the top of your file, make a list of all the specific pieces
of domain knowledge you can find. For each piece of knowledge,
comment on its role in the program and whether or not it’s spe-
cific to this problem or comes from a more general domain, i.e.
business. Pay particular attention to whether or not the knowledge
lends itself to completing function definitions or to organizing
code across different functions and splitting the program into
helper functions for the top-level function.

Now turn your attention back to the design recipe. You’ve dealt
with an initial set of data definitions and explored some issues with
domain knowledge. It’s now time to work on the functions them-
selves. Step five, function definitions, has clearly been done for us.
We’re going to go back and fill in steps two and three.

6. For each of the four functions, complete step two of the design
recipe by writing a signature and purpose statement3. Place these 3 We’re skipping the stub part of step

two. We’ll practice those later.things directly above the function definition. Include the name of
the function in the signature as shown in class4. 4 name: inputs → output

7. Exercise 28 asks you to determine the profit for five different ticket
prices. Let’s use these five cases to complete step three of the de-
sign process, functional examples. For each of the four functions,
develop five examples, one for each of the five ticket prices. Use
BSL check-expect expressions to formulate your examples as unit

http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3adomain%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._fun6%29%29


comp160 lab 5 3

tests. Place the tests between the purpose statement and the func-
tion definition as seen in Section 3.5 of the text. If you have prob-
lems writing the check-expect statements, then first write func-
tional examples as comments like you see in Section 3.1. You are
strongly encouraged to first work out the expected results on your
own and only then check your work by running the relevant BSL
function call in the interaction window5. 5 Tests check to the see that a function

does what its supposed to do not what
it was programmed to do. These two
things are not always the same

8. Thus far we’ve ignored step four of the design recipe, , funciton
templates. Add to your earlier comments about domain knowl-
edge any observations you might have about ways in which do-
main knowledge might have led to a template for one or more of
the functions. Templates provide a basic skeleton, or outline, for
the definition.

9. If for some reason you have not run all of your unit tests by this
point, do so now. If all of your tests passed, then this completes
step six of the design recipe, testing. If some of your tests failed,
then double check that you copied the code correctly and that you
properly calculated your expected results for each test case.

10. Now that the program is complete and tested, let’s put it to work.
Complete Exercise 28 by using the program to determine which
ticket price will maximize the owner’s profit. Write up that price
as a sixth example and test for all four of functions.

Before moving on, let’s look at Exercise 29.

11. You do not need to carry out the program modification described
in Exercise 29. Instead, comment on which program will be easier
to modify and explain your reasoning. Place these comments at
the bottom of your definitions window.

Stubs

Below are a series of function signatures. Provide a stub for each
of them. Once that is done write a single unit test for each using
whatever values of the appropriate type you’d like. The tests are just
to practice writing tests, function calls, and literals using the different
types.

12. foo: Number Number → String

13. fee: Boolean Boolean → Number

14. fye: String → Image

15. fah: Image Number Number → Boolean

http://htdp.org/2018-01-06/Book/part_one.html#%28part._sec~3atesting%29
http://htdp.org/2018-01-06/Book/part_one.html#%28counter._%28exercise._fun7%29%29

