
1 compare out-of-bounds vector access
with at and operator[]

2 http://www.cplusplus.com/

reference/stdexcept/

3 http://www.cplusplus.com/

reference/stdexcept/logic_error/
4 http://www.cplusplus.com/

reference/stdexcept/runtime_error/

COMP 220
Lecture Notes 09
Exceptions and Exception Handling
October 20, 2016

These notes briefly cover exceptions and exception handling in C++.

Runtime Errors

Until now we’ve mostly assumed that arguments passed to proce-
dures meet the preconditions. This is usually a dangerous assump-
tion. You can use other procedures to check and enforce precondi-
tions, sure, but what do you do in those procedures when they detect
some data doesn’t hold mustard? The answer is to raise an error
to the user/client which in programming is called throwing an

exception.
When a procedure throws an exception it directs that exception

to the procedure that called it. This process bypass the usual return
mechanism. A procedure can throw an exception or return, but not
both. The caller of the procedure that threw can either catch and
handle the exception or do nothing and in doing so throw the ex-
ception up to its caller. If no procedure catches the exception and it
makes its way to main, then the program with crash.

Crashing or ending a program when a run-time error occurs is
often the right thing to do. Without exceptions, the operating system
is going to do this in a very abrupt manner. If you had files open
for output, then they won’t be saved and you’re going to lose some
data. What’s more, the OS might do nothing more than tell you a
segmentation fault occurred without giving you any clue as to what
happened1. Exception handling lets you take the time to save work,
write error logs prior to closing down, and report to the user the
nature of the problem.

Exceptions in the Standard Library

The throw operator is used to throw exceptions. The C++ stdexcept2

comes with a set of pre-defined exception types for many common
program errors and these exception types are defined in a heirarchi-
cal manner like the I/O streams we’ve worked with previously.

At the top of the exception hierarchy is std::exception. Next there
are two categories of exceptions: std::logic_error3 and std::runtime_error4.
The later is used for errors that can only be caught at runtime where
the former is used for things that could have been caught at compile

http://www.cplusplus.com/reference/stdexcept/
http://www.cplusplus.com/reference/stdexcept/
http://www.cplusplus.com/reference/stdexcept/logic_error/
http://www.cplusplus.com/reference/stdexcept/logic_error/
http://www.cplusplus.com/reference/stdexcept/runtime_error/
http://www.cplusplus.com/reference/stdexcept/runtime_error/

comp 220 lecture notes 09 exceptions and exception handling 2

5 http://www.cplusplus.com/

reference/cstdlib/exit/

time. Each of these types of exceptions has more specific variants that
you are encouraged to investigate. In the event that you need a more
specific type of error you can use Object-Oriented programming to
extend the exception hierarchy with your own custom exception
types.

Throwing Exceptions

Throwing exceptions is done with the throw operator which is used
in the same fashion as return. Exceptions are constructed like other
objects and typically take a single string type argument. That string
is the error message/description.

Let’s say you were doing some kind of calculator program and
needed to detect divide by zero errors. When you detect the error
you could use a throw statement like the one shown in figure 1.

1 throw std::runtime_error("Divide by Zero detected");

Figure 1: Throwing a generic divide by
zero error

Catching Exceptions

Catching exceptions requires a try..catch statement. The try block
contains the code the might throw an exception. It is followed by
a series of catch blocks for the types of exceptions the code might
generate. Each exception type includes a variable declaration for the
exception.

1 try{

2 // code that might throw

3 }

4 catch(exception_type exception_name){

5 // what to do if exception of exception_type is thrown

6 // exception_name is a variable for the exception object

thrown.

7 }

8 // more catch blocks if needed

Figure 2: Template for Try Catch
statements

You can access the exception error message/description through
the what method. Figure demonstrates exception handling.

The procedure std::exit5 terminates the whole program using the
normal program termination process and can be used if you aren’t
in main and cannot or don’t want to return back to main and return
from there.

http://www.cplusplus.com/reference/cstdlib/exit/
http://www.cplusplus.com/reference/cstdlib/exit/

comp 220 lecture notes 09 exceptions and exception handling 3

1 try{

2 procedure_that_might_throw();

3 }

4 catch(std::runtime_error e){

5 std::err << "Error Detected: " << e.what() << ’\n’;

6 std::exit(EXIT_FAILURE); //ends program with error code

7 }

6 https://github.com/google/

googletest/blob/master/

googletest/docs/AdvancedGuide.

md#exception-assertions

Testing with Exceptions and gTest

If you’re designing procedures that might throw errors then you need
to test that errors are thrown when they should be. The gTest library
provides EXPECT statements for this purpose6.

When a procedure might throw several types of exceptions you
should use EXPECT_THROW.

1 EXPECT_THROW(might_throw(5) , std::runtime_error);

2 EXPECT_THROW(might_throw(10) , std::logic_error);

If the type of the error isn’t important to the test, you can use
EXPECT_THROW_ANY.

1 EXPECT_THROW_ANY(might_throw(5));

Finally, if you need or want to verify that no errors occur there is
EXPECT_NO_THROW.

1 EXPECT_NO_THROW(might_throw(0));

https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#exception-assertions
https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#exception-assertions
https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#exception-assertions
https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#exception-assertions

	Runtime Errors
	Exceptions in the Standard Library
	Throwing Exceptions
	Catching Exceptions
	Testing with Exceptions and gTest

