COMP 220

Lecture Notes 08

Structural Traversal of Stacks, Queues, Maps, and
Sets

October 4, 2016

In these notes we look at structural traversal patterns for our new
non-vector typed ADTs.

Loop-Based Traversal

Traversing stacks, queues, maps, and sets is different than traversing
a vector or a string. We cannot simply count off index values.

std::stack

You cannot traverse a std::stack without mutating the stack. You
must pop the top in order to get to the next. In general, do not count
based on the stack size as the the size changes everytime you push
and pop.

Figure 1: Top to bottom traversal of a
std::stack< ... > st; stack

while(!st.empty()){
...st.top()... //non-destructive top checking

...st.pop()... // the ++ of stack traversal
}

std::queue

Like stack traversal, queue traversal is a destructive process. You
must remove the front in order to get to the next front.

Figure 2: Front to Back traversal of a
std::queue< ... > qu; queue

while(!'qu.empty()){
...qu.front()... //non-destructive front checking

...qu.pop()... // the ++ of queue traversal

}

COMP 220 LECTURE NOTES 08 STRUCTURAL TRAVERSAL OF STACKS, QUEUES, MAPS, AND SETS 2

std::map

A map only gets a sense of order from its implementation. Ab-

stractly, they are best viewed as a set of key+value pairs. The std::map

implementation effectively orders data in key order. The simplest

way to traverse a std::map is with the range-based for loop *. This * aka for-each loop

loop presents you with a std::pair<kt,vt> where kt is the key type

and vt is the value type for the map?. Zhttp://www.cplusplus.com/
Declaring the elements of the map as pairs will present you with reference/utility/pair/

copies of the map data.

Figure 3: Map Traversal with by-value
std::map<kt,vt> mp; pairs

// for each key value pair kvp in map mp...

for(std::pair<kt,vt> kvp : mp){
...kvp.first... //copy of the key
...kvp.second... //copy of the value
...mp[kvp.first]... //the actual value

For efficiency reasons or because we intend to do a mutation while
we traverse we might want access to the actual key and value data
through the pair. Keys cannot be mutated but values can. Thus, we
use const type keys and a by-reference pair.

Figure 4: Map Traversal with by-
std: :map<kt,vt> mp; reference pairs

// for each key value pair kvp in map mp...
for(std::pair<const kt,vt>& kvp : mp){

...kvp.first... //const reference to the key
...kvp.second... //reference to the the value
...mp[kvp.first]... //same as kvp.second

Finally, we can avoid the types of the pair altogether by using the

C++11 auto type3. 3 You should treat this as a way to
simplify complex type declarations and
not a way to dodge a lack of knowledge

std::set of type

Set traversal is also best accomplished via range based for loops. This
traversal is more straight forward than map traversal.

If the copy cost of a by-value traversal is a concern than you can
do a constant reference traversal as well.

You cannot to a set traversal that allows you to mutate the set

http://www.cplusplus.com/reference/utility/pair/
http://www.cplusplus.com/reference/utility/pair/

COMP 220 LECTURE NOTES 08 STRUCTURAL TRAVERSAL OF STACKS, QUEUES, MAPS, AND SETS 3

std: :map<kt,vt> mp;

// for each key value pair kvp in map mp...
for(const auto& kvp : mp){

...kvp.first... //const reference to the key
...kvp.second... //reference to the the value
...mp[kvp.first]... //same as kvp.second

std::set<t> s;

// for each element of type t in set<t> s
for(te: s){
..e... //copy of current set element e

std::set<t> s;

// for each element of type t in set<t> s
for(const t& e : s){
..e... //copy of current set element e

Figure 5: Read only Map Traversal with
const-reference auto-typed pairs

Figure 6: Traversal of set by-value

Figure 7: Traversal of set by const-
reference

12

13

14

COMP 220 LECTURE NOTES 08 STRUCTURAL TRAVERSAL OF STACKS, QUEUES, MAPS, AND SETS 4

elements. If you need to modify the set contents you should be using
set removal and insert operations to remove an item and add the
“new”value.

Recursion

Stacks and Queues

Once again, we have no ability to access the “rest” of a stack or a
queue without discarding the first. The structures must be traversed
through mutation. This means recursive procedures for this struc-
tures must pass the structures by reference.

Figure 8: Recursive Traversal of Stack
data

. stackfoo(std::stack<t>& st, ...){
if(st.empty()){
return ...;
...st.top()...
...st.pop()...

...stackfoo(st,...)...

return ... ;

Figure 9: Recursive Traversal of Queue
data
. queuefoo(std::queue<t>& qu, ...){

if(qu.empty()){

return ...;
...qu.front()...
...qu.pop()...

...queuefoo(qu,...)...

return ... ;

COMP 220 LECTURE NOTES 08 STRUCTURAL TRAVERSAL OF STACKS, QUEUES, MAPS, AND SETS 5

Maps and Sets

At this point you do not want to do recursive procedures for maps
and sets. It requires utilizing C++ iterators and opens a can of worms
we’d rather not open at this point.

	Loop-Based Traversal
	Recursion

