
COMP 220
Lecture Notes 08
Structural Traversal of Stacks, Queues, Maps, and
Sets
October 4, 2016

In these notes we look at structural traversal patterns for our new
non-vector typed ADTs.

Loop-Based Traversal

Traversing stacks, queues, maps, and sets is different than traversing
a vector or a string. We cannot simply count off index values.

std::stack

You cannot traverse a std::stack without mutating the stack. You
must pop the top in order to get to the next. In general, do not count
based on the stack size as the the size changes everytime you push
and pop.

1 std::stack< ... > st;

2 ...

3 while(!st.empty()){

4 ...st.top()... //non-destructive top checking

5

6 ...st.pop()... // the ++ of stack traversal

7 }

Figure 1: Top to bottom traversal of a
stack

std::queue

Like stack traversal, queue traversal is a destructive process. You
must remove the front in order to get to the next front.

1 std::queue< ... > qu;

2 ...

3 while(!qu.empty()){

4 ...qu.front()... //non-destructive front checking

5

6 ...qu.pop()... // the ++ of queue traversal

7 }

Figure 2: Front to Back traversal of a
queue

comp 220 lecture notes 08 structural traversal of stacks, queues, maps, and sets 2

std::map

A map only gets a sense of order from its implementation. Ab-
stractly, they are best viewed as a set of key+value pairs. The std::map
implementation effectively orders data in key order. The simplest
way to traverse a std::map is with the range-based for loop 1. This 1 aka for-each loop

loop presents you with a std::pair<kt,vt> where kt is the key type
and vt is the value type for the map2. 2 http://www.cplusplus.com/

reference/utility/pair/Declaring the elements of the map as pairs will present you with
copies of the map data.

1 std::map<kt,vt> mp;

2 ...

3 // for each key value pair kvp in map mp...

4 for(std::pair<kt,vt> kvp : mp){

5 ...kvp.first... //copy of the key

6 ...kvp.second... //copy of the value

7 ...mp[kvp.first]... //the actual value

8 }

Figure 3: Map Traversal with by-value
pairs

For efficiency reasons or because we intend to do a mutation while
we traverse we might want access to the actual key and value data
through the pair. Keys cannot be mutated but values can. Thus, we
use const type keys and a by-reference pair.

1 std::map<kt,vt> mp;

2 ...

3 // for each key value pair kvp in map mp...

4 for(std::pair<const kt,vt>& kvp : mp){

5 ...kvp.first... //const reference to the key

6 ...kvp.second... //reference to the the value

7 ...mp[kvp.first]... //same as kvp.second

8 }

Figure 4: Map Traversal with by-
reference pairs

Finally, we can avoid the types of the pair altogether by using the
C++11 auto type3. 3 You should treat this as a way to

simplify complex type declarations and
not a way to dodge a lack of knowledge
of typestd::set

Set traversal is also best accomplished via range based for loops. This
traversal is more straight forward than map traversal.

If the copy cost of a by-value traversal is a concern than you can
do a constant reference traversal as well.

You cannot to a set traversal that allows you to mutate the set

http://www.cplusplus.com/reference/utility/pair/
http://www.cplusplus.com/reference/utility/pair/

comp 220 lecture notes 08 structural traversal of stacks, queues, maps, and sets 3

1 std::map<kt,vt> mp;

2 ...

3 // for each key value pair kvp in map mp...

4 for(const auto& kvp : mp){

5 ...kvp.first... //const reference to the key

6 ...kvp.second... //reference to the the value

7 ...mp[kvp.first]... //same as kvp.second

8 }

Figure 5: Read only Map Traversal with
const-reference auto-typed pairs

1 std::set<t> s;

2 ...

3 // for each element of type t in set<t> s

4 for(t e : s){

5 ...e... //copy of current set element e

6 }

Figure 6: Traversal of set by-value

1 std::set<t> s;

2 ...

3 // for each element of type t in set<t> s

4 for(const t& e : s){

5 ...e... //copy of current set element e

6 }

Figure 7: Traversal of set by const-
reference

comp 220 lecture notes 08 structural traversal of stacks, queues, maps, and sets 4

elements. If you need to modify the set contents you should be using
set removal and insert operations to remove an item and add the
“new”value.

Recursion

Stacks and Queues

Once again, we have no ability to access the “rest” of a stack or a
queue without discarding the first. The structures must be traversed
through mutation. This means recursive procedures for this struc-
tures must pass the structures by reference.

1

2 ... stackfoo(std::stack<t>& st, ...){

3

4 if(st.empty()){

5 ...

6 return ...;

7 }

8

9 ...st.top()...

10 ...st.pop()...

11 ...stackfoo(st,...)...

12

13 return ... ;

14 }

Figure 8: Recursive Traversal of Stack
data

1

2 ... queuefoo(std::queue<t>& qu, ...){

3

4 if(qu.empty()){

5 ...

6 return ...;

7 }

8

9 ...qu.front()...

10 ...qu.pop()...

11 ...queuefoo(qu,...)...

12

13 return ... ;

14 }

Figure 9: Recursive Traversal of Queue
data

comp 220 lecture notes 08 structural traversal of stacks, queues, maps, and sets 5

Maps and Sets

At this point you do not want to do recursive procedures for maps
and sets. It requires utilizing C++ iterators and opens a can of worms
we’d rather not open at this point.

	Loop-Based Traversal
	Recursion

