COMP 220
Lecture Notes 02
Reviewing Structural Recursion and Iteration

September 7, 2016

The basic design recipes we focused on in COMP160 and COMP161
utilized a structural pattern. In these notes we quickly review that
pattern to see how it gives rise to algorithms like linear search and
insertion sort.

Structural Design

Our first design principle yields linear search, and insertion sort. It
can be carried out either iteratively or recursively. The core idea is:

The structure of the logic of your algorithm mirrors the structure of
your data.

Structural design first begins with identifying the underlying

structure of your data and then using that to bootstrap the algorithm.

Recursion

You first encountered structural design with list processing functions
in Racket. Lists have a basic recursive structure. They come in two
cases: empty or not. The non-empty list is composed of a singular
datum, the first, and a sub-list, the rest. Because the list is inherently
recursive, structural design dictates that our list algorithms should
also be recursive. In a C++ context, we’d have the following proce-
dure template:

. functionName(recursiveType alst, ...){
if(isEmpty(alst)){

}

else{
. first(alst) ...
... functionName(alst, ...) ...
}
}

Notice the requirements for applying the template given in fig-
ure 1 are that the type of alst provides a means of distinguishing the
empty case from the non-empty case, a means of selecting the first
element, and a means of selecting the rest. All of these operations

Figure 1: The basic template for a
structurally recursive procedure

COMP 220 LECTURE NOTES 02 REVIEWING STRUCTURAL RECURSION AND ITERATION

should occur in O(1) time such that they are not an impediment to
designing efficient algorithms based on this pattern.

The structures we’ve encountered in C++ so far don't typically
support O(1) selection of anything but a single element. To get
around this limitation we’ve developed patterns for recursing over
a range of index values.

Iteration

When we encountered vectors in C++ we discovered a data structure
with efficient random access via numerical indexes. The trade-off for
random access in vectors is that recursive decomposition of the vector
structure directly is either not supported or inefficient’. The same is 10(1) in this case
true with C++ strings. Rather than work with structure recursively,
we used an iterative traversal of the index range. By this we mean
that we start at one end of the vector and visit each item along the
way to the other end of the vector. If we were counting up the index
range and we're visiting the i item, then we must have already
visited the items in the range of 0 to i — 1 and will continue on to
visit the items in the range of i + 1 to size — 1. This gives way to the
state-driven “traverse and accumulate” pattern that typifies iterative
algorithms and is shown in figure 2.

Figure 2: The basic template for a
. functionName(recursiveType avec, ...){ structurally iterative procedure

. accumulator{...};
for(int i{0} ; i < size(avec) ; ++i){
accumulator = ... accumulator ... avec[i] ...
}

. accumulator ...

There is rarely discussion of the iterative structure of some data set
or data structure. Data structures absolutely exhibit recursive struc-
ture and this has been well studied and well utilized in computing.
Iteration is, by definition, the repetition of a process where recursion
is repetition exhibited by both process and definition. For that reason
it’s fair to say that structures cannot be iterative. However, we can
use the same inductive reasoning that underlies recursion to decom-
pose a structure for effective iteration. The structural element comes
from dealing with the data as it sits in the structure. Elements pre-
viously accumulated were the elements originally found prior to the
current element in our vector/structure.

COMP 220 LECTURE NOTES 02 REVIEWING STRUCTURAL RECURSION AND ITERATION

Variations on a Theme

At this point you should be familiar with the patterns hinted at in
figure 1 and 2. The key moving forward is to recognize that struc-
tural design is not only these two patterns but whole class of patterns
typified by these two.

Recursion doesn’t require an empty base case, just at least one
base case. Your base case can be a singleton element or any fixed,
finite number of elements. You can have more than one base case.
What's important is that you have af least one case in which your struc-
ture and your algorithm does not reference itself. The recursive, non-
empty case doesn’t need to be the first and the rest. It can be the last

3

and all but the last. It can be the first two and everything after that?. 2 notice this pairs well with a size 2 base

case!

What's important is that deconstruction by parts is efficient3 and that)
30(1) ideally

recursively applying the deconstruction will eventually converge to the base
case.

Iteration doesn’t have to occur on a left to right basis. You can
count through the indexes from last to first, odds then evens, or some
other counting pattern. The important thing is that your traversal
pattern visits all the relevant elements of the structure. Accumulation isn’t
always explicit. It's sometimes possible to implicitly accumulate and
avoid updates to the accumulator that do not change its state.

Often we can induce recursive or iterative structure where it is not
the default. We can treat the index range of a vector as a recursive
structure and recursive over an index counter. Similarly, it’s possible
to iterate on a list by keeping a state variable that tracks the current
location. When tweaking new structures out of our data we simply
need to ensure that the operations which enable the structural recur-
sion and iteration are efficient.

Ultimately, what makes a strategy a structural one is that you
are attempting to map the logic of your algorithm on to a basic
structure within the data. The strength of this approach is that it is
value agnostic. You don’t concern yourself with the values within the
data structure, you just concern yourself with how data is organized
within the structure itself.

Structural Search and Sort

Linear search is what you get if you apply structural design to the

problem of search. Insertion Sort is what you get when you apply

the design principle to the problem of sorting. These algorithms were

covered and analyzed in Lecture Notes 16 from COMP1614 so we’ll +https://jlmayfield.github.io/
review them briefly here and reiterate how structural design gives MC- CoMP161/

rise to these algorithms.

https://jlmayfield.github.io/MC-COMP161/
https://jlmayfield.github.io/MC-COMP161/

COMP 220 LECTURE NOTES 02 REVIEWING STRUCTURAL RECURSION AND ITERATION 4

Search

Iterative search traverses the vector indexes and accumulates the cur-
rent index of the search key using —1 as a indicator for “not found”.
When searching for the first occurrence of a key or the mere pres-
ence of a key we can forgo the explicit accumulation and return the
index of the key within the loop when it’s found or —1 if the loop
terminates because no occurrence of the key was found. Thus, this
formulation of the algorithm constitutes an optimization of the basic
structural version.

Figure 3: Search: Iterative Implementa-
int search(const std::vector<int>& data,int fst, int lst, int key){ tion

for(unsigned int i{0}; i < data.size() ; ++i){
if(data[i] == key){
return i;

}

return -1;

A vitally important way of thinking about structural recursion is
to imagine the process at some time step t given that there are more
than t elements in the vector. This divides the vector into three re-
gions. Elements from 0 to t — 1 are those we’ve searched through
already. The element at ¢ is the element we are currently working
with. Finally, the elements from ¢ + 1 to the end are those which
we have yet to traverse. The item you're looking for is either not
in the vector or it’s in one of these three regions. If it is the first re-
gion, those we’ve previously traversed, then we should have found
it already®. If it’s in the region we have yet to traverse, the third re- 550 either we've returned that index or
gion, then assume you’ll find it later on. These assertions are what as we've accumulated it's value
known as loop invariants and can act as the inductive hypothesis in
a proof of the correctness of the loop and algorithm generally. As you
get deeper into discrete mathematics you'll learn ©. If you want to ¢ proof by induction
prove a structurally oriented algorithm correct, then odds are you'll
use mathematical induction. The keystone logic is relative to the el-
ement at t. We, the programmer must come up with the logic that
determine if the element at ¢ is the key. If we can do that and we can
properly traverse all of the vector, then our algorithm will work.
To search the vector recursively we need to leverage the recursive
structure of the index range and use a helper procedure that tracks

the index of the first and last”. The helper is technically a more gen- 7 technically we don’t need the track the
last, but doing so opens up alternate
patterns of recursion

N

w

N

12

13

14

15

COMP 220 LECTURE NOTES 02 REVIEWING STRUCTURAL RECURSION AND ITERATION §

eral implementation of search that allows searching the region of the
vector indexed by [fst, Ist).

Figure 4: Search: Recursive Implemen-
int search(const std::vector<int>& data,int key){ tation
return search(data,0,data.size(),key);

int search(const std::vector<int>& data,int fst, int lst, int key){
if(fst >= st){

return -1;
}
else if(data[fst] == key){
return fst;
}
else{
return search(data, fst+1l,1lst, key);
}

Once again, the underlying logic is that of induction. We assert
that if the key is in the rest of the vector, i.e. [fst + 1,Ist), and we
recursively search the rest of the vector, then that recursive call to
search returns the index of the key. We then focus on the logic of
examining the first element. The logic shown in figure 4 optimizes
on this by recognizing that if you need the first occurrence, then it’s
better to check the first and return if it’s the key prior to making the

recursive call.

Sort

Structural sorting starts in the same fashion as searching. The prob-
lem we face is that the operation we need to repeat, i.e. what we do
to the first when recursing or what we do to the i when iterating, is
complex enough as to merit it's own separate design consideration.
With search, what you do to the single element is simple enough that
we can just do it. With sort, it’s not initial obvious and falls clearly
into the camp of, “design a helper”. In both cases the logic of the
helper is that of insert.

In the case of the iterative insertion sort we assume that at step
t, the elements at 0 to t — 1 are sorted and we must incorporate the
t" element such that all t + 1 elements up to and including at t are
sorted after the " iteration. This is an inherently structural argu-
ment because we're thinking in terms of the index range and vector
structure and not about the values in the vector per se.

Insert itself can be solved structurally. The implementation shown

COMP 220 LECTURE NOTES 02 REVIEWING STRUCTURAL RECURSION AND ITERATION

in figure ?? traverses down from last to first and swaps adjacent
elements as it goes. It’s optimized by stopping before the first when
it’s determined that no swap is needed®. ® this means it’s all sorted

1 void iter::sort(std::vector<int>& data){

2

3 for(unsigned int i{1l}; i < data.size(); i++){
4 iter::insert(data,0,1);

5 }

6 return;

7 }

8

9 void iter::insert(std::vector<int>& data,

10 unsigned int fst, unsigned int 1lst){

2 for(unsigned int i{lst-1}; i >= fst && i < data.size(); i--){
13 if(data[i+l] < data[i]){

1 std::swap(data[i],data[i+1]);

15 }

16 else{

17 return;

18 }

19 }

20 return;

a }

2 \label{code:isortiter}
23 \caption{Sort \& Insert: Iterative Implementations}

Using structural design to recursive sort a vector also leads to
insertion sort. The core helper procedure insert could be done it-
eratively, making the top level sort logic recursive and the internal
insertion logic iterative. In figure 5 you see it done recursively for the
sake of consistency and continued practice with structural recursion.

Inductive Reasoning

Recursion and Iteration are two sides of a single coin and that coin is

INDUCTION.

6

COMP 220 LECTURE NOTES 02 REVIEWING STRUCTURAL RECURSION AND ITERATION 7

Figure 5: Sort & Insert: Recursive

: void recur::sort(std::vector<int>& data){ Implementations
2 recur::sort(data,0,data.size());

3 return;

4 }

6 void recur::sort(std::vector<int>& data,int fst, int 1lst){
7 if(fst >= lst-1){

8 return;

9 }

10

11 recur::sort(data, fst+l,lst);

12 recur::insert(data,fst,lst-1);

13 return;

1}

15

16 void recur::insert(std::vector<int>& data,
17 unsigned int fst, unsigned int 1st){
18 if(fst >= lst){

19 return;

20 }

22 if(data[fst] > data[fst+1]){

23 std::swap(data[fst],data[fst+1]);

2 recur::insert(data, fst+l,lst);

25 }

26

	Structural Design
	Structural Search and Sort
	Inductive Reasoning

