COMP 220
Lecture Notes 02
Analyzing Simple Recursion

August 29, 2016

In COMP161 we mostly looked closely at the analysis of loops. Here
we look at simple recursive functions and their analysis. If you want
a refresher and/or some more perspective on the basics of recursion,
then you should review chapter 7 of the text.

Repetition is as Repetition Does

The essential analysis task of analyzing a recursive function is the
same as analyzing a loop because they both induce the same kind

of property in out computations: repetition. Recursive functions do
so by repeatedly calling themselves where loops manage it via the
implicit repetition of C++ loop control structures. What this means is
we must still look for three things:

1. The amount of work carried out independently of the repetition.
2. The amount of work carried out per repetition
3. The frequency of repetition.

The only difference between analyzing a recursive procedure and
loop-based iterative procedure is where we go looking for these
things.

Recursive Linear Search

In lecture notes 16 from COMP161" we looked at linear search imple- "https://jlmayfield.github.
i0/MC-COMP161/Lecture_Notes/

mented recursively. This implementation is shown again in figure 1
compl6l-lectureNotes-16.pdf

and utilizes the two function pattern that is typical with our design
methodology for developing recursive functions for C++ vectors.
The second function utilizes index parameters fst and Ist in order to
manage the recursive decomposition of the vector’s index range.

To start our analysis we start at the top with the search which
takes the vector and key and searches the entire vector. This pro-
cedure carries out O(1) operations to get the vector size and then
makes a recursive call. This means that the complexity is O(1) + O(f)
where O(f) is the complexity of the recursive helper. At this point
we're pretty much done with this procedure. It’s complexity is ex-
actly the complexity of the helper?, i.e. O(f). The trick is not not get 2Do you see why?
hung up on the unknown function f just yet. Take a moment to come

https://jlmayfield.github.io/MC-COMP161/Lecture_Notes/comp161-lectureNotes-16.pdf
https://jlmayfield.github.io/MC-COMP161/Lecture_Notes/comp161-lectureNotes-16.pdf
https://jlmayfield.github.io/MC-COMP161/Lecture_Notes/comp161-lectureNotes-16.pdf

1

2

3

4

5

6

COMP 220 LECTURE NOTES 02 ANALYZING SIMPLE RECURSION 2

int search(const std::vector<int>& data,int key){
return search(data,0,data.size(),key);

int search(const std::vector<int>& data,int fst, int lst, int key){
if(fst >= st){

return -1;
}
else if(data[fst] == key){
return fst;
}
else{
return search(data, fst+1l,1lst, key);
}
}

to a decisive conclusion about the analysis of the top level function
that is independent of the details of the analysis of it’s helper.

Now that we’re more or less done thinking about the top level
function, we can continue wit the helper. The worst case clearly oc-
curs with the condition for the if and else if is false and we drop
down to the recursive call in the else. When this happens then the
procedure will perform exactly 4 operations prior to making the
recursive call3.

We now need to think about how recursion is carried out. The
function gets called over and over until the base case is reached in
which no recursive call is made. If n recursive calls are made, then
n — 1 of those make a recursive call and 1 is the terminating base
case. Combine this with our previous analysis, we known that 4
operations are done when the procedure makes a recursive call, but
what about the final recursive call, the base case call?

The code clearly indicates that two situations can terminate the
recursion. The first is covered by the if and occurs when the the
index range specified by fst and Ist is empty. This case requires a
single operations. The next situation is when for a non-empty index
range, the key is found at fst. This case requires three operations.
Given that our concern is overall worst case complexity, we need to
recognize that the terminating case that maximizes work is the first
one because terminating there means we’ve searched an entire index
range and not a part of a range.

We now known that one operation, the work of the terminating
base case, is carried out outside the repetition and that four opera-
tions are carried out every time a recursive call is made. We're left
the question of how many recursive calls are made? To determine

Figure 1: Search: Recursive Implemen-
tation

3>=,[], ==, and +

COMP 220 LECTURE NOTES 02 ANALYZING SIMPLE RECURSION

this we can dig into the code logic. Every recursive call advances the
value of fst by one. Recursion terminates when fst>=Ist. In short,
we're dealing with counting logic just like our loops.

fst+k > =Ist
k > Ist— fst

Now recall that Ist — fst 4+ 1 is the number of integers in the range

(1)

of fst to Ist if we exclude last. So a simpler way of state what we
found is that the recursion repeats once for each of the elements in the
index range. When searching an entire vector, this is exactly the size of
the vector. We can now find the exact work done by this function and
it’s complexity. For a vector of size n we’ll do 4n 4 1 operations with
a complexity of O(n).

Recurrence Relations

Our analysis of liner search mostly relied on feeling our way through
the code and recognizing a pattern familiar from iteration. There is a
way of analyzing the complexity of a recursive function that is more
general from the perspective that it relies less on recognizing the kind
of counting that typifies iteration.

Before we determined the frequency of repetition we recognized
two crucial cases to the worst case complexity for our function.

1. The empty range base case that carries out a single operation

2. The recursive case that carries out four operations plus the cost of
recursively searching the remainder of the vector.

We can express this knowledge of the complexity of search as a
recursive function. Let n be the size of the index range* and 7 be +n =fst-Ist
the function that maps # to the number of operations needed for the
worst case search. Then equation 2 expresses T recursively!

T0O) = 1
Tn) = Tn—-1)+4

Equations like those shown in equation 2 are called RECURRENCE

()

REeLATIONS and are incredibly useful in the analysis of algorithms.
The problem is that they are open form solutions to our problem. They
do not provide us with an exact, calculable solution. What we really
want is a closed form solution where 7 is not on the right hand side of
the equation. To do this we must solve the recurrence.

Solving Simple Recurrences via Unrolling

The recurrence relation shown in equation 2 is about as simple as
they come. The easiest way to solve it is usually to just unroll the

3

COMP 220 LECTURE NOTES 02 ANALYZING SIMPLE RECURSION

recursion and determine the underlying pattern. As has become the
norm, you're goal is to establish an equation for 7 (n) after k levels of
unrolling or recursion depth k. The initial equation gives us depth 1
and we take it from there.

Tn) = Tn-1)+4
= (T(n—=2)+4)+4=T(n—2)+2x4
(T(n—3)+4)+2%4=T(n-3)+3%4

= k'7;(n—k)+4)+4(k—1) = T(n—k)+ 4k

To finish the process and solve the recurrence we must determine
when the recurrence terminates, the max depth of the recursion. The
base case occurs when n = 0 so the recurrence terminates when
n —k = 0 or, solving for k, with a recursive depth of k = n. When
this happens, then we substitute the base case for the known value of
7 (0) on the right and find the closed form solution found in equa-
tion 3.

T(n)=4n+1 (€))

To be certain that we’re correct we can do a quick proof by induc-
tion or at the very least check the core logic of the proof. When # is
zero our closed form gives us 7 (0) = 1. The base case holds. Now
we assume everything works great for the first n — 1 steps and verify
that this implies the above equation.

Tn) = Tn-1)+4
= (An-1)+1)+4
= 4n—-44+1+4
= 4dn+1

Thus, by the principle of mathematical induction our closed form
solution matches the open form recurrence relation.

Simple Recurrences

In lab we noticed that basic step counting loops will keep us firmly
in the ballpark of linear time algorithms or worse. The same pattern
holds true for these kind of simple recurrences. What if the base case
has a fixed cost of a4, each recursive call has a fixed cost of w, and
each step steps towards the base case by some fixed amount s. Then
we’d be dealing with a recurrence that fits the template shown in
equation 5.

T0) = a

T) = T(n—s)+w)

COMP 220 LECTURE NOTES 02 ANALYZING SIMPLE RECURSION 5

Tn) = Tn—s)+w

= T(n—2s)+2w
T(n—3s) + 3w (5)
= T(n —ks) +kw

We now solve for k when n —ks = 0 to get k = [%] for a closed
form of:

T(n) =[] +a ®)

For fixed base case cost a, step size s, and work per recursion w, this
is linear time, O(n).

A Different Recurrence

Let’s look at another recurrence relation without any particular code
attached to it. In equation 7 you see a recurrence that is similar to
that of linear search but where the argument to the recursive call to
T is % instead of n — 1.

TO) = 1

T = T()+4 7

If you've been paying attention to the material thus far, then you can
guess what the analysis of this recurrence is going to yield. Let’s
proceed by unrolling and see what we see.

Tn) = T(%)+4

= (7'(2§)+4)+4—7'(2%)+4*2
= (T(§)+4)+2%4="T()+4x3
- '(.7.'(%2”?)+4)+4(k—1):7'(2”—k)+4k

After k steps of recursion we see 7 () + 4k operations. The base
case is reached when [;| = 0. A nicer way of saying this is in terms
the second to last step where | 755 | = 1.

=] = 1
n = 2k1 ®)
log,n = k-1
k = [(logyn)] +1=[log, (n)]
Thus the recurrence terminates at a depth of |log, [yielding
logarithmic complexity.
T(n) = 4[log,n|+1 ©

= 4[log, (n)] +1 = O(logn)

COMP 220 LECTURE NOTES 02 ANALYZING SIMPLE RECURSION

Analysis to Code

Understanding the analysis of algorithms can really help you ad-
vance as a program because when you understand the efficiency
limits of certain structures like basic counting loops and recursive
procedures, then you immediately understand the impact of certain
design strategies on efficiency. You also give yourself targets in the
design process. If you are shooting for something logarithmic, then
you know you can’t just make little steps through a vector. You must
find a way to take increasingly larger steps, to cut the problem size
by a constant factor not a constant increment. Absent any other plan
of attack, this kind of knowledge helps to give you a place to start.

	Repetition is as Repetition Does
	Recursive Linear Search
	Recurrence Relations
	Simple Recurrences
	A Different Recurrence
	Analysis to Code

