
COMP 220
Lecture Notes 01
Logarithms
August 25, 2016

Student experience with logarithms varies widely. In these notes we
look over the core properties of logs with an eye toward algorithm
analysis.

Exponentials

Before we talk logarithms, let’s talk exponentials. At this point in
your life you should be pretty familiar with raising things to a power.
In algebra you worked with a lot of variables with fixed exponents
like x2 or x3. Exponentiation is generally thought of as repeated
multiplication where we multiple the base,x, by itself for as many
times as the exponent. This idea alone lets you derive a lot of the
basic rules for exponent manipulation.

The product rules tells us we can add exponents when multiplying
two exponentiations with the same base. To see this just expand out
the two terms, xa and xb, of the product into repeated multiplications
of x to see that the end result is the product of a + b instances of x.

xa ∗ xb = (x1 ∗ x2 ∗ . . . ∗ xa) ∗ (x1 ∗ x2 ∗ . . . ∗ xb)

= x1 ∗ x2 ∗ . . . ∗ xa+1 ∗ xa+2 ∗ . . . ∗ xa+b

= xa+b
(1)

Similarly, we can manipulate the product of two exponentials if
the base differs but the exponents match. Once again, expand out the
individual terms of the product and then reorganize the terms of the
expanded product1 in order to pair up the two bases. 1 because multiplication is commutative

xa ∗ ya = (x1 ∗ x2 ∗ . . . ∗ xa) ∗ (y1 ∗ y2 ∗ . . . ∗ ya)

= (x1 ∗ y1) ∗ (x2 ∗ y2) ∗ . . . ∗ (xa ∗ y ∗ a)
= (x ∗ y)a

(2)

Raising an exponentiation to a power is equivalent to multiplying
the exponents. We see this by once again expanding the exponenti-
ation and examining the resultant product. The result is b terms of
multiplying x by itself a times or all together as x multiplied by itself
a ∗ b times.

(xa)b = (xa
1 ∗ xa

2 ∗ . . . ∗ xa
b)

= ((x0 ∗ x1 ∗ . . . ∗ xa)1 ∗ . . . ∗ (x0 ∗ x1 ∗ . . . ∗ xa)b)

= xa∗b
(3)

comp 220 lecture notes 01 logarithms 2

If you wanted to get formal about this you could identify the re-
cursive structure in the repeated multiplication2 taking special note 2 xa = x ∗ xa−1

of the base cases3 and then use proof by induction to prove all of the 3 x0 = 1 and x1 = x

above properties.
Along the way you probably encountered negative exponents as a

shorthand for fractions 4 and fractional exponents as a shorthand for 4 x−2 = 1
x2

roots 5. Consider fractions as negative exponents. For any x and a we 5 x
1
2 =
√

x

know that xa

xa = 1
xa xa = 1 because of the properties of multiplicative

inverses. Representing 1
xa as x−a and then applying the product rule

yields:
1
xa xa = x−a ∗ xa

= xa−a

= x0 = 1
(4)

The math checks out because we choose the notation in such a way
that it must!

Roots

Roots deserve their own section because they highlight a general
relationship between functions that is important for understanding
logarithms: inverse functions. We know that raising any number to
the second power is typically referred to as the square function. The
square root function is the function that inverts this operations such
that you retain the original base of the square

√
x2 = x. The reverse6 6 (

√
x)2

is also true if we allow for complex numbers. If we’re only talking
about positive, real valued numbers, then the nth root7 is the inverts, 7 n

√

or is the inverse of, the nth power and vice versa.
Now back to exponent notation. Why use fractional exponents

for roots. Remember that the inverse relation between a power
and it’s root tells us that for positive, real valued numbers we get
n
√

xn = (n
√

x)n
= x. To work this out such that taking the root has

an exponent based representation we must find the right value for
the root and the right operation for the composition of a power and
and a root. If taking the root is a special form of exponentiation then
composition is just continued exponentiation8. If m is the exponent 8 (xn)m

value for the nth root, then we must find a value for m such that the
following holds:

(xn)m = (xm)n = x (5)

comp 220 lecture notes 01 logarithms 3

That value must be m = 1
n . Why?

(xn)
1
n = (x

1
n)

n

= x
1
n ∗n

= x
n
n

= x1 = x

= (x
1
n)

n

(6)

Logarithms

When determining the complexity of an algorithm we very often
want to know how many times something will repeat9 until it termi- 9 through iteration or recursion

nates. Very often this value varies with the some feature of our data
or problem10. For example, let’s say we’re working with a vector and 10 array/vector/data set size

the size of that vector, n, can be different every time we run our al-
gorithm. If we wanted to repeatedly cut the size of the vector in half
until there were only one item left11, how many times would we need 11 see Binary Search

to cut it in half?
Initially we have n items. After one cut, we have n

2 . Then we cut
that half in half to get n

4 . But wait! This is just continued multiplica-
tion by 1

2 , a.k.a. repeated exponentiation by −2. After k cuts we have
n−2k

elements in our vector. So our original question is then for what
value of k is the following true12: 12 we’re going to assume that n is a

power of 2 for now

1 = n−2k

1 = n 1
2k

2k = n

The problem we face is that the variable we care about, k, is in
the exponent not the base. If it were in the base, say k−2n

then no
problem, we can use roots to isolate k from n. This is not what we’re
dealing with though. We need a function such that {(na) = a not
{(na) = n. Where the nth root gives us the the base of an nth power
where n is some known value, we need a function that gives us the
unknown exponent of a constant number raised to the power. That
function is the base n logarithm or logn.

When we refer to the exponential function we are referring to the act
of raising some fixed base b to some variable power n, bn. The base b
logarithm13 is the inverse of this function and vice versa. This means: 13 logb

logb bk = blogb k = k (7)

comp 220 lecture notes 01 logarithms 4

In English: the log base b of some number is the power to which you
would raise b in order to obtain that number. Notice this means that
for any b, logb 0 is undefined and logb 1 = 0 as no power of b is 0

and for all b, b0 = 1. So, if you can only remember one thing about
logarithms it should be this relationship with exponentiation. It com-
bined with the exponent rules allows you to derive anything you
need to know about logarithms.

Now back to our problem. If we have exactly n = 2k elements in
our vector then after cutting it in half k = log2 n times we have only
one item remaining. Similarly, if we wanted to grow from size from
1 up to some n2k by successive doubling14 then we’d need to double 14 see dynamic arrays

the size k = log2 n times. What if we aren’t dealing with powers of
two? Perhaps I need to know the number of doublings that are need
to get some n equal to or larger than 357? It can’t be log2 357 as that’s
around 8.5. The answer must be 9 as strictly 8 is too few. This is easy
to figure without a calculator and without knowing the exact value
of log2 357 if we understand the log/exponentiation relationship and
know our powers of 2. From this perspective we’re asking: “What is
the powers of 2 bound 357 and which is the upper bound?” A quick
check reveals our bounds are 256 = 28 and 512 = 29. This means
8 < log2 357 < 915. From here we can decide which bound solves our 15 256 < 2log2 357 < 512

problem. In this case it’s 9. More generally, for n < 2k we need to do
dlog2 ne doublings and blog2 nc cuts in half to reach our goals16. 16 do you see why we round down

when cutting but up when growing?

Algebra and Logarithms

It’s often fun to find more verbose ways of expressing a number or
expression in a mathematical statement. For example, notice that for
any number n 6= 0 we can pick an arbitrary base b 6= 0 and n = blogb n

or n = logb bn. Why is this fun? Because from there we can start to
derive and prove all the important algebraic properties of logarithms.
Let’s begin with the product rule.

logb n ∗m = logb blogb n ∗ blogb m

= logb blogb n+logb m

= logb n + logb m
(8)

The fact that the log of a product is equal to the sum of the logs
of the terms is one of the oldest applications of logarithms17. From 17 see slide rules

here we can have some real fun. What about division? Given that
a
b = a ∗ 1

b = ab−1, all we need to do is work out how to handle simple
multiplicative inverses like 1

n = n−1. The key here is remembering

comp 220 lecture notes 01 logarithms 5

that n ∗ n−1 = 1.

logb n−1 ∗ n = logb 1 = 0
= logb n ∗ n−1

= logb n + logb n−1

logb n−1 = − logb n

(9)

In general we see that logb n/m = logb n− logb m.
What about raising numbers to a power in the presence of loga-

rithms? Just remember that raising to a power is repeated multiplica-
tion and apply the product rule for logarithms.

logb nm = logb n1 ∗ · · · ∗ nm

= logb n1 + · · ·+ logb nm

= m logb n
(10)

Notice that given what we proved about division, this rule works for
an m, positive or negative18. 18 logb n−1 = −1 ∗ logb n

Now what about roots? It’s helpful to step back and recall a defin-

ing property for roots19 and n ∗ n−1 = 1. That is, (np)
1
p = n. 19 like we did with division

logb (n
p)

1
p = logb n

= p logb n
1
p

logb n
1
p =

logb n
p

(11)

Once again, the exponent rule applies when roots are dealt with as
fractional powers.

Notice that all these rules dealt with some operation that can be
understood in terms of multiplication and the relationship that fol-
low from it. This shouldn’t be a surprise as the logarithm is the in-
verse of exponentiation which in turn can be viewed as repeated
multiplication. What’s worth noting is we have no algebraic rules for
logb (n + m). When addition occurs before the logarithm, then we’re
kind of stuck.

Base Conversion

In computer science we love powers of two and therefore love loga-
rithms base 2. If all you have is a basic calculator or a programming
library without generic logarithms built in then you’re often stuck
with log10

20 and the natural logarithm, or ln = loge. This means we 20 typically listed as just log

as computer scientists have a real vested interest in knowing how to
convert between logarithm bases. Once again, we can prove/derive
the formula by playing around with long-winded ways of writing
down basic expressions. In this case we’ll start from a way to say

comp 220 lecture notes 01 logarithms 6

n = n in terms of the logs and exponents and go from there.

blogb n = aloga n

loga blogb n = loga aloga n

logb n ∗ loga b = loga n

logb n =
loga n
loga b

(12)

An important consequence of this is that because any two loga-
rithms differ by at most a constant factor21, then in complexity space 21 loga b or its inverse

loga n = O(logb n) for all bases a and b. For this reason we typically
just say “Logarithmic Time” and ignore the base of the logarithm.

Conclusion

We’ll do some simple exercises to develop your intuition and think-
ing about logarithms. They will pop up time and time again this
semester so start familiarizing yourself with all the properties we
proved in these notes. Beyond getting to know your logs, these notes
should also illustrate the value of really knowing and understanding
some fundamental principles and definitions such that other im-
portant properties can be proved form those principles. We mostly
teased out what you need to know about logarithms by playing
around with algebraic properties of multiplication and some basic
definitions. The technique that enabled this more often than not is
looking and alternative, often verbose ways of writing down simple
mathematical statements. When dealing with proofs, you often need
to expand and manipulate rather than simplify.

	Exponentials
	Logarithms
	Conclusion

