COMP220 — Code::Blocks Project Setup

Fall 2016

Previously we used a suite of mostly GNU tools to develop build our programs. Now we’re using the
Integrated Development Environment (IDE) Code::Blocks to manage the development of our code. Like
all IDEs, Code::Blocks (C::B) provides an all-in-one solution that includes a text editor, integration with
compilers, integration with debuggers, and build management. There are several basic things we need to be
able to do. You may recall them from working with make in Comp161.

e Link external libraries with our code

e Compile the gTest executable for our unit tests

e Compile a debugging version of our program that works with the integrated debugger.
e Compile a release (ready for users) version of our program.

The last two items on this list will happen by default when we create new projects in Code::Blocks. The first
two require our intervention. This document walks you through the basic setup for projects in the course.

1 Where are your documents?

In C::B you organize programs into projects. Projects are grouped by workspaces. You can have only one
workspace open and active at once. You can have multiple projects/programs open but only one can be
active. It’s name will be in bold text. Workspaces correspond to folders on your hard dive and projects
correspond to sub-folders of the workspace folder. When you add source documents to your project, then
they can be found within the project folder. The exact location off the folder is specified when you create
the project and the workspace folder is specified when you first start up C::B. You’ll be submitting source
code only for this course, so it’s important that you know where these things are located. Pay attention as
you set things up.

2 Global Settings and C++411

Before you start creating projects and source documents, it’s useful to know where your global compiler
settings are and how to change them. These settings let you set some gcc compiler options that will be
applied to every single build of every single project unless you say otherwise. In our case there is only one
option we want to be applied globally and that’s to compile with respect to the C++11 standard.

Go to the Settings drop-down menu and select Compiler. .. and you should now see this window modulo
some selections:

Compiler settings

Global compiler settings

Selected compliler:
[5
GNU GCC Compiler -
Set as default Copy Rename Delete Reset defaults
Global compiler settings
| —— Compiler settings Linker settings Search directories Toolchain executables Custom variables Build options Other settings
i- Policy: | yse project
Profiler settings Compliler Flags Other compiler options ~ Other resource compiler options #defines
N —_—
) e B General
Have g++ follow the 1998 ISO C++ language standard [-std=c++98] O
Have g++ follow the C++11 ISO C++ language standard [-std=c++11]
Valgrind settings Have g++ follow the C++14 ISO C++ language standard [-std=c++14] O
g Have g++ follow the coming C++0x ISO C++ language standard [-std=c++0x] [l
J Have gcc follow the 1999 IS0 C language standard [-std=c99] M
== In C mode, support all ISO C90 programs. In C++ mode, remove GNU extensions that conflict with ISO C++ [-ansi] [l
Target x86 (32bit) [-m32]
Batch builds & B D
Target x86_64 (64bit) [-m64] [l
& Debugging
Produce debugging symbols [-g] O
B Profiling
Profile code when executed [-pg] O
= Warnings
Enable all common compiler warnings (overrides many other settings) [-Wall] O
Enable Effective-C++ warnings (thanks Scott Meyers) [-Weffc++] D
NOTE: Right-click to setup or edit compiler flags.
Cancel OK

Take a moment to browse some of the options. All we're concerned with is setting the C++11 compiler,
which has been done in the above image. You can more easily browse flags by selecting a filter category in
the Categories drop-down. As you can see above, the Warnings category has been selected. In here we find
the different C++ standards along with the familiar warnings flags like - Wall. We'll reserve - Wall for our
debugging builds rather than apply it to all the builds. When you’re ready, check the box for C++11 and
press OK to close the window.

3 Basic Project
Now we’re going to setup a basic project for a dead simple hello world program.

3.1 Create a new Empty Project

First we make a new project by either going to File > New > Project... or by using the New File button
under the drop down menu. In either case, we're greeted with the following:

New from template X

Category: | <all categories> - Go
Build targets
Files C‘\‘} ARM Project é& GLFW project C‘\‘} PowerPC Project cancel
L
Custom
AVR Project GLUT GLUT project QT4 project
User templates @) [proJ ®| proj
Code::Blocks plugin @ GTK+ project spL, SDL project
4! Console application Irrlicht project SFML project
= PP) proj - Proj
|&3) D application 7 Lightfeather project @ shared library
& Empty project % MCS51 Project @ static library
g FLTK project "\ Matlab project (.3:;\‘} TriCore Project
"@ Fortran DLL q Ogre project & wxWidgets project
@ Fortran application OpencCV project View as
Large icons
L@ Fortran library Gan. OPENGL project o Lst

TIP: Try right-clicking an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

As is done in the picture, select the Empty Project option and then press the Go button. Now you’ll
see the Empty Project window where you pick the project name and location. Go ahead and fill this out,
paying attention to the locations, and press Next. The next screen lets you set the compiler and choose some
default builds. We want all the default options, as shown below.

E Console Please select the compiler to use and which configurations

you want enabled in your project.

Compiler:

leU GCC Compiler v

+/ Create "Debug” configuration: |Debug |

"Debug” options

Output dir.: |bin.-'Debug.-’ |

Objects output dir.: |0bj.-'Debug.-’ |

«f Create "Release"” configuration: |Release |

"Release” options

Output dir.: |binIReLeasea’ |

Objects output dir.: |obijeLeasea’ |

< Back Finish Cancel

So, if your window looks like the one above, press enter.

3.2 Set Some Build Specific Compiler Options

Before we move on, we’re going to make sure our Debug and Release builds have the options enabled that
we want. To change build options you can right click on the project name in the workspace explorer and
select Build Options. ... You should make sure to select the options shown in the following two images. Be
sure to notice which build is selected and the category filters.

Project build options x

TestSetup Selected compiler
GNU GCC Compiler .
Release

Compiler settings Linker settings Search directories Pre/post build steps Custom variables "Make" commands

Policy: Append target options to project options -

Compiler Flags Other compiler options ~ Other resource compiler options #defines

B General
Have g++ follow the 1998 ISO C++ language standard [-std=c++98] O
Have g++ follow the C++14 ISO C++ language standard [-std=c++14] O
Have g++ follow the coming C++0x ISO C++ language standard [-std=c++0x] [l
Have gcc follow the 1999 ISO C language standard [-std=c99] M

In C mode, support all ISO C90 programs. In C++ mode, remove GNU extensions that conflict with 1SO C++ [-ar []
Target x86 (32bit) [-m32]
Target x86_64 (64bit) [-m64]
E Debugging
Produce debugging symbols [-g]
H Profiling

Profile code when executed [-pg]

& Od

=

E Warnings
Enable all common compiler warnings (overrides many other settings) [-Wall]

Enable Effective-C++ warnings (thanks Scott Meyers) [-Weffc++]

U=

NOTE: Right-click to setup or edit compiler flags.

Cancel OK

Project build options x

TestSetup Selected compller
Debug GNU GCC Compller .

Compiler settings Linker settings Search directories Pre/post build steps Custom variables "Make" commands

Policy: Append target options to project options T

Compiler Flags Other compiler options Other resource compiler options #defines

Warn whenever a pointer is cast such that the required alignment of the target is increased [-Wcast-align] O
Warn whenever a switch statement does not have a default case [-Wswitch-default] D
Warn whenever a switch statement has an index of enumerated type and lacks a case for one or more of the n [
E Optimization
Don't keep the frame pointer in a register for functions that don't need one [-fomit-frame-pointer] O
Expensive optimizations [-fexpensive-optimizations] O
Optimize even more (for speed) [-02]
Optimize fully (for speed) [-03] O
Optimize generated code (for size) [-0s] D
Optimize generated code (for speed) [-0] D
Optimize more (for speed) [-O1] D
strip all symbols from binary (minimizes size) [-s]
E CPU architecture tuning
AMD Athlon (MMX, 3DNow!, enhanced 3DNow!, SSE prefetch) [-march=athlon] D
AMD Athlon 4 (MMX, 3DNow!, enhanced 3DNow!, full SSE) [-march=athlon-4] D
AMD Athlon MP (MMX, 3DNow!, enhanced 3DNow, full SSE) [-march=athlon-mp] D

NOTE: Right-click to setup or edit compiler flags.

Cancel oK

3.3 Adding a Source Document

Now we want to create a file called HelloWorld.cpp in a folder named src¢ within our project folder. By
keeping our source documents organized into src we make it easier manage code submission later. You can
either go ahead and create the src folder using the GUI or CLI or you’ll have the change to do it when you
create your first project file.

First go back to the New options either from the File menu or the New File button and select the new
file option. You want to select the empty file option as shown below.

New from template

Projects Category: | <All categories> v | Go |

[

Build targets

E\ Cancel

L C/C++ header

User templates .
C~
C/C++ source
. =
C+
Empty file
;. View as

®) Large icons

Fortran source List
TIP: Try right-clicking an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

Once you select the file type, Empty in this case, you’ll be able to choose the name and location as well
as which builds should include the file. You are required to enter the full path to the file. This can be a bit
of pain to type out but if you select the ... button next to the text field you should start the file browser
in your project directory. You can then browse to the directory of your choosing and enter your desired file
name. This is the time where you can create a srcfolder if you have not done so already. If this document
is a library document or contains your main procedure, then it’s probably included in all the builds, like we
see here.

Empty file

3 ' .
. E)ll}rl“' Please enter thg file's Locatpn and.name and
whether to add it to the active project.

Filename with full path:
lectsa’CBSetupDemoa’srca’HeLLoWorLd_cpp”

+/ Add file to active project
In build target(s):
B Debug

AlL Mone

< Back Finish Cancel

Once your file has been created it should pop up in the text editor. If not, you can select it from the
project explorer. Go ahead and write up some kind of dead simple program, like this hello world you see
here.

HelloWorld.cpp X

1 FEL:

2 * Author: Logan Mayfield

3 * Date: Fall 2015

4 .

5 */

6

7 #include <iostream=

8

9 int main(int argc, char* argv[]){
10 std::cout << "Hello world!" =< std::endl;
11

12 return 6;

13 }

14

3.4 Building and Running

You should notice a few things: C::B will highlight things it things are syntax errors and attempt to auto-
complete code for you. This can save a tone of time and we’ll keep an eye out for these kind of features as
we work more with C::B. What we need to know now is:

e How to select a build type
e How to compile
e How to run the compiled program

You should see the follow items on the bar above the editor.

R S] Debug =

The drop-down on the right lets you select the build, we’ll work mostly in Debug as its setup for more,
better warnings and debugging/profiling. The gear button will compile the code. The green play button
runs the code. If no compiled version of the build exists, then hitting run prompts you to build or not.
Finally the gear/play combo will build and then run. The blue arrows in a circle will force the rebuilding
of all files in the project. Each of these buttons has a corresponding menu option in the Build drop down.
There’s also a Clean option in that menu that will clear out temp files just like we did with our makefiles.

Compiler and errors and warnings will appear down below the text editor. The compiled program itself
will be in the project folders corresponding to the build type. Your encouraged to introduce some errors
to your hello world program, play around a bit and just explore C::B a bit before moving on to the more
involved stuff to come.

4 Adding a Testing Build for gTests

We develop code with Google’s gTest unit test library. Tests are written in a file separate from the library
they’re testing and, when compiled, are linked to a pre-written main procedure provided by Google. To
enact this in C::B we need to create a whole new Build type that includes the test code and links to the
necessary libraries.

First, let’s add the Build to the project. Get to project Properties either through the Project drop down
or by right clicking the project name. Once there, select the Build Targets tab and press the Add button. I
named my build gTests but you can name in just Tests or something similar if you wish. What we’re going
to do is basic set the Build up like Debug and Release by filling in the options as follows:

Project/targets options

Project settings = Build targets | Build scripts MNotes C/C++ parser options Debugger

Build targets Selected build target options
Debug Add Platforms: All
Release
Rename Type: Console application v
Duplicate + Pause when execution ends
Delete
Output filename: bin/gTests/CBSetupDemo

Import library filename: $(TARGET_OUTPUT_DIR)3(TARGET_QUTPUT_B)
Virtual targets...|| | Definition file filename: ' $(TARGET_OUTPUT_DIR)$(TARGET_OUTPUT_B,

Dependencies... v/ Auto-generate filename prefix

+ Auto-generate filename extension
Re-order...

Build options... Execution working dir:

Objects output dir: obj/gTests/

Build target files:

src/HelloWorld.cpp

Create project
from target... Toggle checkmarks ALL/? on AlLL/? off

Cancel OK

Once you’ve got your basic build setup, we need to add the link options for the Google libraries. You
can get to the build options from the previous window by selecting the Build Options button. Once there,
select your new testing build and select the Linker Settings tab. Then add the three link flags like you see
here:

Project build options

SPLHelloWorld [Selected compiler
Debug GNU GCC Compiler s
Release
< Compiler settings Linker settings Search directories Pre/post build steps Custom variables ™
Policy: | Append target options to project options -
Link libraries: Other linker options:
-lgtest
-lgtest_main
-lpthread
Add| |Edit| |Delste ea
Cancel OK

Our test build is setup. Now we need tests!

4.1 Adding Tests Files

Let’s just say I have the file Hello Tests.cpp already in my project src folder and I want it to be compiled with
my testing build. Then we can simply return to the Build Targets tab in our Project’s Properties window
and check the box for the test file like you see here.

Project/targets options

Project settings = Build targets | Build scripts MNotes C/C++ parser options Debugger

Build targets Selected build target options
Debug Add Platforms: | All
Release
Rename Type: |Console application v
Duplicate +/ Pause when execution ends
Delete eate import

Output filename: bin/Tests/SPLHelloWorld

Import library filename: $(TARGET_OUTPUT_DIR)%(TARGET_OUTPUT_B/
Virtual targets...|| | Definition file filename: = $(TARGET_OUTPUT_DIR)$(TARGET_OUTPUT_B;
Dependencies... v/ Auto-generate filename prefix

JAuto—generate filename extension
Re-order...

Build options... Execution working dir: | |

Objects output dir: |obj.|’Tests |

Build target files:
B HelloTests.cpp

HelloWorld.cpp
Create project

from target... Toggle checkmarks ALL/? on ALLS? off Selected file properties

Cancel OK

Alternatively, when we create new files, we got to choose to which builds they’re added. So, if you're
starting from a fresh, empty file for your tests and your test build is already setup, then you can choose
to add them to the test build when you create the file. Just remember that tests builds generally include
your tests and the libraries your testing but not any files containing another main. On the other hand,
your Debug and Release builds should not build tests and should definitely build some main other than the
Google testing main.

5 Conclusion

You now know how to setup a basic C++ project in C::B and can configure a testing build to work with
the Google gTest unit testing framework. You’ll find the file comp220-cbsetupdemo.zip in the course home
directory (/home/comp220/fal5). It contains a simple hello world program and a simple gTest test set. Feel
free to use it to practice setting up a project before you get to your first assignments. Either way, try to
walk through these steps at least once before you start your first lab assignment.

10

	Where are your documents?
	Global Settings and C++11
	Basic Project
	Create a new Empty Project
	Set Some Build Specific Compiler Options
	Adding a Source Document
	Building and Running

	Adding a Testing Build for gTests
	 Adding Tests Files

	Conclusion

